List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5914428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling defect mediated color-tunability in LEDs with Eu-doped GaN-based active layers. Journal of Applied Physics, 2022, 131, 045701.	2.5	2
2	Elucidation of the excitation mechanism of Tb ions doped in Al <i>x</i> Galâ^' <i>x</i> N grown by OMVPE toward a wavelength-stable green emitter. Journal of Applied Physics, 2022, 131, .	2.5	4
3	Eu-doped GaN-Based Red LED for Next-Generation Micro-LED Displays. , 2022, , .		0
4	Improved Q-factors of III-nitride-based photonic crystal nanocavities by optical loss engineering. Optics Express, 2022, 30, 28853.	3.4	4
5	Eu-doped GaN and InGaN monolithically stacked full-color LEDs with a wide color gamut. Applied Physics Express, 2021, 14, 031008.	2.4	41
6	Enhanced Red Emission of Eu,O-Codoped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>Ga</mml:mi><mml:mi mathvariant="normal">N</mml:mi </mml:mrow> Embedded in a Photonic Crystal Nanocavity with Hexagonal Air Holes. Physical Review Applied, 2021, 15, .</mml:math 	3.8	12
7	Formation and optical characteristics of ZnO:Eu/ZnO nanowires grown by sputtering-assisted metalorganic chemical vapor deposition. Japanese Journal of Applied Physics, 2021, 60, SCCE05.	1.5	4
8	Droop-free amplified red emission from Eu ions in GaN. Japanese Journal of Applied Physics, 2021, 60, 120905.	1.5	5
9	Direct detection of rare earth ion distributions in gallium nitride and its influence on growth morphology. Journal of Applied Physics, 2020, 127, 013102.	2.5	6
10	47â€3: Invited Paper: High Brightness and RGB Integration of Euâ€doped GaNâ€based Red LEDs for Ultrahighâ€resolution Microâ€LED Display. Digest of Technical Papers SID International Symposium, 2020, 51, 691-694.	0.3	0
11	Enhancement of Er luminescence in microdisk resonators made of Er,O-codoped GaAs. Journal of Applied Physics, 2020, 127, 233101.	2.5	1
12	Room-temperature operation of near-infrared light-emitting diode based on Tm-doped GaN with ultra-stable emission wavelength. Journal of Applied Physics, 2020, 127, .	2.5	11
13	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	mo> 3.8	l:mrow> < /mr 17
14	GaN:Eu,O-Based Resonant-Cavity Light Emitting Diodes with Conductive AllnN/GaN Distributed Bragg Reflectors. ACS Applied Electronic Materials, 2020, 2, 732-738.	4.3	17
15	Purcell-Effect-Enhanced Radiative Rate of Eu 3+ Ions in GaN Microdisks. Physical Review Applied, 2020, 14, .	3.8	12
16	Quantitative evaluation of enhanced Er luminescence in GaAs-based two-dimensional photonic crystal nanocavities. Applied Physics Letters, 2020, 116, 181102.	3.3	2
17	Enhanced Eu luminescence in GaN: Eu,O-based light emitting diodes via introduction of nanostructures and nanocavities. , 2020, , .		0
18	Strong crystal field splitting and polarization dependence observed in the emission from Eu3+ ions doped into GaN. , 2020, , .		3

2

#	Article	IF	CITATIONS
19	Investigation on Suitable Structure for Laser Oscillation in Eu-doped GaN with Two-Dimensional Photonic Crystal Nanocavities. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 721-726.	0.2	1
20	Perspective of Semiconductor Technologies Contributed to the IoT Society. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 762-766.	0.2	0
21	Evaluations of Selective Dry Etching of GaAs Core Layer having Embedded InAs Quantum Dots Using Optical Measurements towards Photonic Crystal Laser Fabrication. , 2020, , .		0
22	Enhanced Photoluminescence in High- <i>Q</i> Photonic Crystal Nanocavities with Er,O-Codoped GaAs. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 823-828.	0.2	0
23	Localized-surface-plasmon-enhanced GaN:Eu-based red light-emitting diodes utilizing silver nanoparticles. Applied Physics Express, 2019, 12, 095003.	2.4	8
24	Picosecond time-resolved dynamics of energy transfer between GaN and the various excited states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">E<mml:msup><mml:mrow><mml:mi mathvariant="normal">u</mml:mi </mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo><!--<br-->ions. Physical Review B, 2019, 100, .</mml:mrow></mml:msup></mml:mi </mml:mrow></mml:math>	3.2 /mml:mrov	3 v>
25	16.3: <i>Invited Paper:</i> New development in Red Lightâ€emitting Diodes (LEDs) using Euâ€doped GaN for Monolithic Micro‣ED Displays. Digest of Technical Papers SID International Symposium, 2019, 50, 167-167.	0.3	0
26	Enhanced luminescence efficiency of GaN:Eu-based light-emitting diodes by localized surface plasmons utilizing gold nanoparticles. Japanese Journal of Applied Physics, 2019, 58, SCCC09.	1.5	4
27	Color-Tunablility in GaN LEDs Based on Atomic Emission Manipulation under Current Injection. ACS Photonics, 2019, 6, 1153-1161.	6.6	15
28	Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy. Journal of Applied Physics, 2018, 123, .	2.5	3
29	Quantitative study of energy-transfer mechanism in Eu,O-codoped GaN by time-resolved photoluminescence spectroscopy. Journal of Applied Physics, 2018, 123, 161419.	2.5	4
30	Control of the energy transfer between Tm3+ and Yb3+ ions in Tm,Yb-codoped ZnO grown by sputtering-assisted metalorganic chemical vapor deposition. Journal of Applied Physics, 2018, 123, 161409.	2.5	6
31	Formation and optical properties of Tm,Yb-codoped ZnO nanowires grown by sputtering-assisted metalorganic chemical vapor deposition. Journal of Crystal Growth, 2018, 503, 13-19.	1.5	7
32	Nanowire–quantum-dot lasers on flexible membranes. Applied Physics Express, 2018, 11, 065002.	2.4	7
33	Recent progress in nanowire quantum-dot lasers. , 2018, , .		0
34	Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications. Journal of Crystal Growth, 2017, 468, 144-148.	1.5	13
35	Lasing in a single nanowire with quantum dots. Proceedings of SPIE, 2017, , .	0.8	0
36	Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission. Physical Review B, 2017, 96, .	3.2	13

#	Article	IF	CITATIONS
37	A Nanowire-Based Plasmonic Quantum Dot Laser. Nano Letters, 2016, 16, 2845-2850.	9.1	64
38	Demonstration of a plasmonic laser using quantum dot gain medium. , 2016, , .		0
39	Circularly Polarized Light Emission of Quantum Dots at the Band Edge of Three-Dimensional Chiral Photonic Crystals. , 2015, , .		0
40	Demonstration of a three-dimensional photonic crystal nanocavity in a âŸ 110⟩-layered diamond structure. Applied Physics Letters, 2015, 107, .	3.3	9
41	Low-Threshold near-Infrared GaAs–AlGaAs Core–Shell Nanowire Plasmon Laser. ACS Photonics, 2015, 2, 165-171.	6.6	92
42	Room-temperature lasing in a single nanowire with quantum dots. Nature Photonics, 2015, 9, 501-505.	31.4	159
43	Room-temperature lasing in GaAs nanowires embedding multi-stacked InGaAs/GaAs quantum dots. , 2015, , .		1
44	Circular dichroism in a three-dimensional semiconductor chiral photonic crystal. Applied Physics Letters, 2014, 105, .	3.3	38
45	Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. Applied Physics Letters, 2014, 105, .	3.3	26
46	Formation and optical properties of multi-stack InGaAs quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition. Journal of Crystal Growth, 2013, 370, 299-302.	1.5	5
47	Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal. Optics Express, 2013, 21, 29905.	3.4	23
48	Formation of a single In(Ga)As/GaAs quantum dot embedded in a site-controlled GaAs nanowire by metalorganic chemical vapor deposition for application to single photon sources. Materials Research Society Symposia Proceedings, 2012, 1439, 115-119.	0.1	0
49	Site-controlled formation of InAs/GaAs quantum-dot-in-nanowires for single photon emitters. Applied Physics Letters, 2012, 100, .	3.3	47
50	Coulomb-induced emission dynamics and self-consistent calculations of type-II Sb-containing quantum dot systems. Physical Review B, 2012, 85, .	3.2	28
51	Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 11PE13.	1.5	2
52	Lateral interdot carrier transfer in an InAs quantum dot cluster grown on a pyramidal GaAs surface. Nanotechnology, 2011, 22, 055706.	2.6	21
53	Visible light emission from self-catalyzed GaInP/GaP core-shell double heterostructure nanowires on silicon. Journal of Applied Physics, 2010, 108, 034315.	2.5	18
54	1.52â€,μm photoluminescence emissions from InAs quantum dots grown on nanopatterned GaAs buffers. Applied Physics Letters, 2010, 97, 143111.	3.3	4

JUN TATEBAYASHI

#	Article	IF	CITATIONS
55	Optical characteristics of GalnP/GaP double-heterostructure core-shell nanowires embedded in polydimethylsiloxane membranes. Applied Physics Letters, 2010, 96, 253101.	3.3	14
56	Controlled Formation and Dynamic Wulff Simulation of Equilibrium Crystal Shapes of GaAs Pyramidal Structures on Nanopatterned Substrates. Crystal Growth and Design, 2010, 10, 2509-2514.	3.0	8
57	Dynamic of the Optical Matrix Element in Type II GaAsSb/GaAs Quantum Dots for Laser Applications. , 2009, , .		Ο
58	Complex emission dynamics of type-II GaSb/GaAs quantum dots. Applied Physics Letters, 2009, 95, 061102.	3.3	34
59	GaSb/GaAs type-II quantum dots grown by droplet epitaxy. Nanotechnology, 2009, 20, 455604.	2.6	39
60	Fabrication and characteristics of broad-area light-emitting diode based on nanopatterned quantum dots. Nanotechnology, 2009, 20, 035302.	2.6	13
61	Continuous-Wave, Room-Temperature Operation of 2-µm Sb-Based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser Monolithically Grown on GaAs Substrates. Applied Physics Express, 2009, 2, 112102.	2.4	10
62	Monolithically Integrated III-Sb-Based Laser Diodes Grown on Miscut Si Substrates. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 716-723.	2.9	23
63	Coulomb effects in typeâ€ll Ga(As)Sb quantum dots. Physica Status Solidi (B): Basic Research, 2009, 246, 752-755.	1.5	21
64	Optical transition pathways in type-II Ga(As)Sb quantum dots. Journal of Luminescence, 2009, 129, 456-460.	3.1	16
65	Formation and Optical Characteristics of Type-II Strain-Relieved GaSb/GaAs Quantum Dots by Using an Interfacial Misfit Growth Mode. IEEE Nanotechnology Magazine, 2009, 8, 269-274.	2.0	7
66	Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices. Journal Physics D: Applied Physics, 2009, 42, 073002.	2.8	40
67	Energy transfer in patterned InAs quantum dot cluster grown on GaAs nano-pyramid. , 2009, , .		0
68	Photoluminescence investigation of InAs quantum dots incorporating DWELL structures on patterned and planar GaAs (100) substrate. Proceedings of SPIE, 2009, , .	0.8	0
69	Device Characteristics of GalnSb/AlGaSb Quantum Well Lasers Monolithically Grown on GaAs Substrates by Using an Interfacial Misfit Array. Journal of Electronic Materials, 2008, 37, 1758-1763.	2.2	3
70	Effects of accumulated strain on the surface and optical properties of stacked 1.3μm InAs/GaAs quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2182-2184.	2.7	11
71	Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well. Nanotechnology, 2008, 19, 295704.	2.6	24
72	1.52 μm photoluminescence from InAs quantum dots grown on patterned GaAs buffer. , 2008, , .		0

#	Article	IF	CITATIONS
73	Monolithically integrated III-Sb based laser diodes grown on miscut Si substrates. , 2008, , .		1
74	Improved photoluminescence efficiency of patterned quantum dots incorporating a dots-in-the-well structure. Nanotechnology, 2008, 19, 435710.	2.6	16
75	Electric field modulation of exciton recombination in InAs/GaAs quantum dots emitting at 1.3μm. Journal of Applied Physics, 2008, 104, 013504.	2.5	6
76	Photoluminescence comparison analysis of patterned and self-assembled quantum dots by MOCVD. , 2008, , .		0
77	Measurement of electro-optic coefficients of 1.3â€[micro sign]m self-assembled InAs/GaAs quantum dots. Electronics Letters, 2007, 43, 410.	1.0	5
78	1.54â€[micro sign]m GaSb/AlGaSb multi-quantum-well monolithic laser at 77â€K grown on miscut Si substrate using interfacial misfit arrays. Electronics Letters, 2007, 43, 1198.	1.0	30
79	Room-temperature lasing of type-II "W" GaSb/GaAs quantum dots embedded in InGaAs quantum well. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
80	Localized strain reduction in strain-compensated InAsâ^•GaAs stacked quantum dot structures. Applied Physics Letters, 2007, 90, 163121.	3.3	20
81	Optical properties of patterned InAs quantum dot ensembles grown on GaAs nanopyramids. Applied Physics Letters, 2007, 91, .	3.3	19
82	Single dot spectroscopy of site-controlled InAs quantum dots nucleated on GaAs nanopyramids. Applied Physics Letters, 2007, 91, 133104.	3.3	27
83	Room-temperature lasing at 1.82μm of GalnSbâ^•AlGaSb quantum wells grown on GaAs substrates using an interfacial misfit array. Applied Physics Letters, 2007, 91, 141102.	3.3	23
84	Lasing characteristics of GaSbâ^•GaAs self-assembled quantum dots embedded in an InGaAs quantum well. Applied Physics Letters, 2007, 90, 261115.	3.3	54
85	Controlled InAs quantum dot nucleation on faceted nanopatterned pyramids. Applied Physics Letters, 2007, 90, 183103.	3.3	50
86	1.54 μm Monolithically Integrated GaSb Quantum Well Laser Diode on Silicon Operating at 77K. , 2007, , .		0
87	Effects of rapid thermal annealing on the emission properties of highly uniform self-assembled InAsâ^•GaAs quantum dots emitting at 1.3μm. Applied Physics Letters, 2007, 90, 111912.	3.3	25
88	Room-Temperature Operation of Buffer-Free GaSb–AlGaSb Quantum-Well Diode Lasers Grown on a GaAs Platform Emitting at 1.65 \$mu\$m. IEEE Photonics Technology Letters, 2007, 19, 1628-1630.	2.5	33
89	Ground-state lasing of stacked InAsâ^•GaAs quantum dots with GaP strain-compensation layers grown by metal organic chemical vapor deposition. Applied Physics Letters, 2006, 88, 221107.	3.3	23
90	III/V ratio based selectivity between strained Stranski-Krastanov and strain-free GaSb quantum dots on GaAs. Applied Physics Letters, 2006, 89, 161104.	3.3	89

#	Article	IF	CITATIONS
91	Optical Properties of Stranski-Krastanow and Strain-Free GaSb Quantum Dots on GaAs Substrates - Towards Sb-based Type-II Quantum Dot Emitters , 2006, , .		0
92	Strain-compensation in closely stacked quantum dot active regions grown by metal organic chemical vapor deposition. , 2006, , .		0
93	Development of Electrically Driven Single-Quantum-Dot Device at Optical Fiber Bands. Japanese Journal of Applied Physics, 2006, 45, 3621-3624.	1.5	13
94	Formation and optical characteristics of strain-relieved and densely stacked GaSbâ^•GaAs quantum dots. Applied Physics Letters, 2006, 89, 203116.	3.3	53
95	Improved surface morphology of stacked 1.3μm InAsâ^•GaAs quantum dot active regions by introducing annealing processes. Applied Physics Letters, 2006, 89, 081902.	3.3	10
96	Controlled Crystal Structure in Patterned InAs Quantum Dot Formation By Selective Area MOCVD. , 2006, , .		0
97	Microdisk lasers: quantum dot lasing and bistability. , 2005, , .		0
98	Highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3μm by metalorganic chemical vapor deposition. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 77-80.	2.7	2
99	InAs/AlAs quantum dots with InGaAs insertion layer: dependence of the indium composition and the thickness. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 138-142.	2.7	4
100	Lasing at 1.28 /spl mu/m of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1027-1034.	2.9	17
101	1.55-μm light emission from InAs QDs embedded in a high-Q photonic crystal microcavity. , 2005, , .		0
102	Observation of 1.55 µm Light Emission from InAs Quantum Dots in Photonic Crystal Microcavity. Japanese Journal of Applied Physics, 2005, 44, 2579-2583.	1.5	12
103	A very narrow photoluminescence broadening (< 16 meV) from â^1⁄4 1.5 Î1⁄4m self-assembled quantum dots at room temperature. AIP Conference Proceedings, 2005, , .	0.4	1
104	Quantum-dot lasing and photonic molecule behavior in microdisk lasers. , 2005, , .		0
105	Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. Optics Express, 2005, 13, 1615.	3.4	44
106	1.28μm lasing from stacked InAsâ^GaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition. Applied Physics Letters, 2005, 86, 053107.	3.3	56
107	Tuning ofg-factor in self-assembled In(Ga)As quantum dots through strain engineering. Physical Review B, 2005, 71, .	3.2	49
108	Effects of InGaAs Insertion Layer on the Properties of High-Density InAs/AlAs Quantum Dots. Japanese Journal of Applied Physics, 2004, 43, 3828-3830.	1.5	0

#	Article	IF	CITATIONS
109	Narrow photoluminescence linewidth (<17â€,meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 2817-2819.	3.3	60
110	Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature. Applied Physics Letters, 2004, 85, 1326-1328.	3.3	30
111	Improvement of the uniformity of self-assembled InAs quantum dots grown on InGaAsâ^•GaAs by low-pressure metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 85, 2753-2755.	3.3	23
112	Carrier relaxation in closely stacked InAs quantum dots. Journal of Applied Physics, 2004, 96, 150-154.	2.5	18
113	Control of InxGa1-xAs Capping Layer Induced Optical Polarization in Edge-Emitting Photoluminescence of InAs Quantum Dots. Japanese Journal of Applied Physics, 2004, 43, 1978-1980.	1.5	2
114	Enhanced Optical Properties of High-Density (>1011/cm2) InAs/AlAs Quantum Dots by Hydrogen Passivation. Japanese Journal of Applied Physics, 2004, 43, 2118-2121.	1.5	4
115	Numerical analysis of DFB lasing action in photonic crystals with quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 814-819.	2.7	3
116	Structural and optical properties of high-density (>1011/cm2) InAs QDs with varying Al(Ga)As matrix layer thickness. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 279-284.	2.7	7
117	Spectroscopy on single columns of vertically aligned InAs quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 409-413.	2.7	3
118	Formation of ultrahigh-density InAs/AlAs quantum dots by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 1877-1879.	3.3	21
119	Size, shape, and strain dependence of thegfactor in self-assembled In(Ga)As quantum dots. Physical Review B, 2004, 70, .	3.2	98
120	Control of optical polarization anisotropy in edge emitting luminescence of InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2004, 84, 1820-1822.	3.3	54
121	InAsâ^•GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots. Applied Physics Letters, 2004, 85, 1024-1026.	3.3	47
122	Low threshold current operation of self-assembled InAsâ^•GaAs quantum dot lasers by metal organic chemicalvapour deposition. Electronics Letters, 2003, 39, 1130.	1.0	42
123	Optical Characteristics of Two-Dimensional Photonic Crystal Slab Nanocavities with Self-Assembled InAs Quantum Dots for 1.3 µm Light Emission. Japanese Journal of Applied Physics, 2003, 42, 2391-2394.	1.5	6
124	Luminescence in excess of 1.5μm at room-temperature of InAs quantum dots capped by a thin InGaAs strain-reducing layer. Journal of Crystal Growth, 2002, 237-239, 1296-1300.	1.5	22
125	Growth area control of InAs quantum dots for photonic-crystal-based optical devices by selective MOCVD. , 2001, , .		2

126 Micro-machined tunable (Mi-T) VCSEL around 1.3 \hat{l} 4m. , 2001, , .

#	Article	IF	CITATIONS
127	Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2001, 78, 3469-3471.	3.3	259
128	Area-Controlled Growth of InAs Quantum Dots by Selective MOCVD. Japanese Journal of Applied Physics, 2000, 39, 2344-2346.	1.5	4
129	Area-controlled growth of InAs quantum dots and improvement of density and size distribution. Applied Physics Letters, 2000, 77, 3382-3384.	3.3	44
130	Enhanced pl of high density (≠4.7x10/sup 11//cm/sup 2/) InAs QDs by using graded interface of GaAs/AlAs/GaAs. , 0, , .		0
131	Effects of InGaAs insertion layer on the properties of high-density InAs/AlAs quantum dots. , 0, , .		0
132	CW lasing of self-assembled InAs quantum dot lasers on GaAs substrates grown by metalorganic chemical vapour deposition. , 0, , .		0
133	Formation of self-assembled InAs/GaAs quantum dots with an ultranarrow phtoluminecence linewidth of ˜11 meV by rapid thermal annealing. , 0, , .		0
134	Design considerations of III-nitride-based two-dimensional photonic crystal cavities with crystallographically induced disorder. Applied Physics Express, 0, , .	2.4	4
135	Formation and optical characteristics of GaN:Eu/GaN core-shell nanowires grown by organometallic vapor phase epitaxy. Japanese Journal of Applied Physics, 0, , .	1.5	2