Marcelo Lattarulo Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/591279/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Plant Physiology, 2022, 188, 14-15.	4.8	3
2	OUP accepted manuscript. Plant Physiology, 2022, 188, 1942-1943.	4.8	1
3	OUP accepted manuscript. Plant Physiology, 2022, 188, 1417-1418.	4.8	Ο
4	BRing on the fight! Brassinosteroid-related transcription factors modulate resistance to fungi attack in wheat. Plant Physiology, 2021, 187, 2350-2351.	4.8	0
5	OUP accepted manuscript. Plant Physiology, 2021, 187, 678-680.	4.8	0
6	Breaking the code of auxin metabolism: an additional role for DIOXYGENASE FOR AUXIN OXIDATION 1. Plant Physiology, 2021, 187, 7-8.	4.8	0
7	Into a dilemma of plants: the antagonism between chemical defenses and growth. Plant Molecular Biology, 2021, , 1.	3.9	9
8	Metallic Action! The Dynamics of a Tripartite Iron Uptake Complex in Arabidopsis Roots. Plant Physiology, 2020, 184, 1212-1213.	4.8	1
9	A Novel Role for a Phospholipase D in Plant Immunity. Plant Physiology, 2020, 183, 33-34.	4.8	2
10	Gearing Up the Clock of Hypocotyl Growth!. Plant Physiology, 2020, 183, 433-434.	4.8	0
11	In the Search for the <i>SWEET</i> est Pear. Plant Physiology, 2020, 182, 1808-1809.	4.8	0
12	Mosses: Versatile plants for biotechnological applications. Biotechnology Advances, 2020, 41, 107533.	11.7	11
13	A Novel Regulator of Stomatal Immunity in Tomato. Plant Physiology, 2020, 183, 820-821.	4.8	0
14	Endophytic bacteria mitigate mercury toxicity to host plants. Symbiosis, 2019, 79, 251-262.	2.3	16
15	Antiviral peptides as promising therapeutic drugs. Cellular and Molecular Life Sciences, 2019, 76, 3525-3542.	5.4	213
16	A structural perspective of plant antimicrobial peptides. Biochemical Journal, 2018, 475, 3359-3375.	3.7	23
17	Molecular Mechanisms Affecting Cell Wall Properties and Leaf Architecture. Advances in Photosynthesis and Respiration, 2018, , 209-253.	1.0	7
18	The role of antimicrobial peptides in plant immunity. Journal of Experimental Botany, 2018, 69, 4997-5011.	4.8	98

Marcelo Lattarulo Campos

#	Article	IF	CITATIONS
19	Phytochromes are key regulators of abiotic stress responses in tomato. Scientia Horticulturae, 2017, 222, 126-135.	3.6	31
20	Regulation of growth–defense balance by the JASMONATE ZIMâ€ĐOMAIN (JAZ)â€MYC transcriptional module. New Phytologist, 2017, 215, 1533-1547.	7.3	182
21	TheÂRoleÂofÂSpecializedÂPhotoreceptorsÂinÂthe ProtectionÂofÂEnergyâ€RichÂTissues. Agronomy, 2017, 7, 23	.3.0	7
22	Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. Journal of Experimental Botany, 2016, 67, 5313-5324.	4.8	63
23	Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs. Nature Communications, 2016, 7, 12570.	12.8	323
24	Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1847-1852.	0.8	58
25	Repression of jasmonate signaling by a nonâ€∏IFY JAZ protein in Arabidopsis. Plant Journal, 2015, 82, 669-679.	5.7	125
26	Jasmonate-Triggered Plant Immunity. Journal of Chemical Ecology, 2014, 40, 657-675.	1.8	246
27	The Role of Phytochromes in Stress Tolerance. , 2013, , 283-299.		6
28	Negative Feedback Control of Jasmonate Signaling by an Alternative Splice Variant of JAZ10 Â Â Â. Plant Physiology, 2013, 162, 1006-1017.	4.8	120
29	The Role of Phytochrome in Stress Tolerance. Journal of Integrative Plant Biology, 2011, 53, 920-929.	8.5	83
30	Convergence of developmental mutants into a single tomato model system: 'Micro-Tom' as an effective toolkit for plant development research. Plant Methods, 2011, 7, 18.	4.3	161
31	Small and remarkable. Plant Signaling and Behavior, 2010, 5, 267-270.	2.4	43
32	Growth-active gibberellins overcome the very slow shoot growth of Hancornia speciosa, an important fruit tree from the Brazilian "Cerrado― Trees - Structure and Function, 2009, 23, 1229-1235.	1.9	8
33	Brassinosteroids interact negatively with jasmonates in the formation of anti-herbivory traits in tomato. Journal of Experimental Botany, 2009, 60, 4347-4361.	4.8	129