Robin Chazdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5912725/publications.pdf Version: 2024-02-01

		6613	6471
217	27,679	79	157
papers	citations	h-index	g-index
223	223	223	22728
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
2	Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.	27.8	5
3	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
4	Key challenges for governing forest and landscape restoration across different contexts. Land Use Policy, 2021, 104, 104854.	5.6	39
5	The cost of restoring carbon stocks in Brazil's Atlantic Forest. Land Degradation and Development, 2021, 32, 830-841.	3.9	14
6	Adding forests to the water–energy–food nexus. Nature Sustainability, 2021, 4, 85-92.	23.7	74
7	Associations between socioâ€environmental factors and landscapeâ€scale biodiversity recovery in naturally regenerating tropical and subtropical forests. Conservation Letters, 2021, 14, e12768.	5.7	18
8	A proposal to advance theory and promote collaboration in tropical biology by supporting replications. Biotropica, 2021, 53, 6-10.	1.6	0
9	lt is not just about time: Agricultural practices and surrounding forest cover affect secondary forest recovery in agricultural landscapes. Biotropica, 2021, 53, 496-508.	1.6	21
10	Response to "Withering the coloniality of the forest transition?― Ambio, 2021, 50, 1765-1766.	5.5	0
11	Seedâ€rain–successional feedbacks in wet tropical forests. Ecology, 2021, 102, e03362.	3.2	7
12	Drivers of soil microbial community assembly during recovery from selective logging and clearâ€cutting. Journal of Applied Ecology, 2021, 58, 2231-2242.	4.0	3
13	Using leading and lagging indicators for forest restoration. Journal of Applied Ecology, 2021, 58, 1806-1812.	4.0	10
14	The political ecology playbook for ecosystem restoration: Principles for effective, equitable, and transformative landscapes. Global Environmental Change, 2021, 70, 102320.	7.8	39
15	Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, 2021, 264, 112582.	11.0	61
16	Forest and Landscape Restoration: A Review Emphasizing Principles, Concepts, and Practices. Land, 2021, 10, 28.	2.9	31
17	Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Current Biology, 2021, 31, R1326-R1341.	3.9	24
18	Soil Fungal Community Composition Correlates with Site-Specific Abiotic Factors, Tree Community Structure, and Forest Age in Regenerating Tropical Rainforests. Biology, 2021, 10, 1120.	2.8	12

#	Article	IF	CITATIONS
19	Predicting landscapeâ€scale biodiversity recovery by natural tropical forest regrowth. Conservation Biology, 2021, , .	4.7	4
20	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
21	Multidimensional tropical forest recovery. Science, 2021, 374, 1370-1376.	12.6	165
22	Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio, 2020, 49, 74-84.	5.5	68
23	Exotic eucalypts: From demonized trees to allies of tropical forest restoration?. Journal of Applied Ecology, 2020, 57, 55-66.	4.0	51
24	Litter dynamics recover faster than arthropod biodiversity during tropical forest succession. Biotropica, 2020, 52, 22-33.	1.6	7
25	Silvicultural treatment effects on commercial timber volume and functional composition of a selectively logged Australian tropical forest over 48Âyears. Forest Ecology and Management, 2020, 457, 117690.	3.2	10
26	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.	27.8	489
27	Creating a culture of caretaking through restoring ecosystems and landscapes. One Earth, 2020, 3, 653-656.	6.8	6
28	Co-Creating Conceptual and Working Frameworks for Implementing Forest and Landscape Restoration Based on Core Principles. Forests, 2020, 11, 706.	2.1	35
29	Evaluating the potential of fullâ€waveform lidar for mapping panâ€tropical tree species richness. Global Ecology and Biogeography, 2020, 29, 1799-1816.	5.8	31
30	Achieving Quality Forest and Landscape Restoration in the Tropics. Forests, 2020, 11, 820.	2.1	25
31	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	1.6	22
32	Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest. Forest Ecology and Management, 2020, 476, 118442.	3.2	5
33	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	27.8	278
34	Variations of leaf eco-physiological traits in relation to environmental factors during forest succession. Ecological Indicators, 2020, 117, 106511.	6.3	16
35	Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications Biology, 2020, 3, 317.	4.4	20
36	Conceptualising the Global Forest Response to Liana Proliferation. Frontiers in Forests and Global Change, 2020, 3, .	2.3	21

#	Article	IF	CITATIONS
37	Manila Declaration on Forest and Landscape Restoration: Making It Happen. Forests, 2020, 11, 685.	2.1	17
38	Above-ground biomass recovery following logging and thinning over 46Âyears in an Australian tropical forest. Science of the Total Environment, 2020, 734, 139098.	8.0	14
39	Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environmental Research Letters, 2020, 15, 043002.	5.2	100
40	Achieving costâ€effective landscapeâ€scale forest restoration through targeted natural regeneration. Conservation Letters, 2020, 13, e12709.	5.7	120
41	Thinking outside the plot: monitoring forest biodiversity for social-ecological research. Ecology and Society, 2020, 25, .	2.3	5
42	Ecological outcomes of agroforests and restoration 15 years after planting. Restoration Ecology, 2020, 28, 1135-1144.	2.9	19
43	People, primates and predators in the Pontal: from endangered species conservation to forest and landscape restoration in Brazil's Atlantic Forest. Royal Society Open Science, 2020, 7, 200939.	2.4	19
44	Look down—there is a gap—the need to include soil data in Atlantic Forest restoration. Restoration Ecology, 2019, 27, 361-370.	2.9	45
45	Global restoration opportunities in tropical rainforest landscapes. Science Advances, 2019, 5, eaav3223.	10.3	286
46	Restoring forests as a means to many ends. Science, 2019, 365, 24-25.	12.6	197
47	A new approach to map landscape variation in forest restoration success in tropical and temperate forest biomes. Journal of Applied Ecology, 2019, 56, 2675-2686.	4.0	24
48	The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Global Environmental Change, 2019, 59, 101988.	7.8	33
49	Ecological restoration increases conservation of taxonomic and functional beta diversity of woody plants in a tropical fragmented landscape. Forest Ecology and Management, 2019, 451, 117538.	3.2	15
50	Forests: when natural regeneration is unrealistic. Nature, 2019, 570, 164-164.	27.8	10
51	Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology, 2019, 100, e02637.	3.2	44
52	Towards more effective integration of tropical forest restoration and conservation. Biotropica, 2019, 51, 463-472.	1.6	31
53	Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nature Ecology and Evolution, 2019, 3, 928-934.	7.8	120
54	Biodiversity recovery of Neotropical secondary forests. Science Advances, 2019, 5, eaau3114.	10.3	291

#	Article	IF	CITATIONS
55	Monitoring the structure of forest restoration plantations with a drone-lidar system. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 192-198.	2.8	81
56	The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 2019, 438, 34-43.	3.2	70
57	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	7.8	199
58	Maximizing biodiversity conservation and carbon stocking in restored tropical forests. Conservation Letters, 2018, 11, e12454.	5.7	59
59	Protecting intact forests requires holistic approaches. Nature Ecology and Evolution, 2018, 2, 915-915.	7.8	21
60	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
61	Recovery of species composition over 46†years in a logged Australian tropical forest following different intensity silvicultural treatments. Forest Ecology and Management, 2018, 409, 660-666.	3.2	29
62	Chronosequence predictions are robust in a Neotropical secondary forest, but plots miss the mark. Global Change Biology, 2018, 24, 933-943.	9.5	4
63	Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. Ecological Applications, 2018, 28, 373-384.	3.8	35
64	Panâ€ŧropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 2018, 27, 1366-1383.	5.8	78
65	A landscape approach for costâ€effective largeâ€scale forest restoration. Journal of Applied Ecology, 2018, 55, 2767-2778.	4.0	82
66	Legume abundance along successional and rainfall gradients in Neotropical forests. Nature Ecology and Evolution, 2018, 2, 1104-1111.	7.8	107
67	Phenotypic plasticity and local adaptation favor range expansion of a Neotropical palm. Ecology and Evolution, 2018, 8, 7462-7475.	1.9	20
68	Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biological Reviews, 2017, 92, 326-340.	10.4	410
69	Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 24, 37-47.	2.7	88
70	Inconvenient realities and the path toward scienceâ€based forest restoration policies: A reply to Veldman et al American Journal of Botany, 2017, 104, 652-653.	1.7	1
71	Beyond hectares: four principles to guide reforestation in the context of tropical forest and landscape restoration. Restoration Ecology, 2017, 25, 491-496.	2.9	101
72	Opposing mechanisms affect taxonomic convergence between tree assemblages during tropical forest succession. Ecology Letters, 2017, 20, 1448-1458.	6.4	24

#	Article	IF	CITATIONS
73	Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Goodâ€Turing theory. Ecology, 2017, 98, 2914-2929.	3.2	17
74	Degradation and Recovery in Changing Forest Landscapes: A Multiscale Conceptual Framework. Annual Review of Environment and Resources, 2017, 42, 161-188.	13.4	85
75	Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8817-8822.	7.1	52
76	Landscape Restoration, Natural Regeneration, and the Forests of the Future. Annals of the Missouri Botanical Garden, 2017, 102, 251-257.	1.3	84
77	Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 2017, 3, e1701345.	10.3	360
78	A Policyâ€Driven Knowledge Agenda for Global Forest and Landscape Restoration. Conservation Letters, 2017, 10, 125-132.	5.7	265
79	Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests. Ecosystems, 2017, 20, 340-353.	3.4	37
80	Targeted reforestation could reverse declines in connectivity for understory birds in a tropical habitat corridor. Ecological Applications, 2016, 26, 1456-1474.	3.8	26
81	Higher survival drives the success of nitrogenâ€fixing trees through succession in Costa Rican rainforests. New Phytologist, 2016, 209, 965-977.	7.3	69
82	Biodiversity and human well-being: an essential link for sustainable development. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20162091.	2.6	137
83	A traitâ€mediated, neighbourhood approach to quantify climate impacts on successional dynamics of tropical rainforests. Functional Ecology, 2016, 30, 157-167.	3.6	61
84	Effects of fragmentation and landscape variation on tree diversity in post-logging regrowth forests of the Southern Philippines. Biodiversity and Conservation, 2016, 25, 923-941.	2.6	6
85	The drivers of tree cover expansion: Global, temperate, and tropical zone analyses. Land Use Policy, 2016, 58, 502-513.	5.6	48
86	Natural regeneration as a tool for largeâ€scale forest restoration in the tropics: prospects and challenges. Biotropica, 2016, 48, 716-730.	1.6	353
87	Natural regeneration in the context of largeâ€scale forest and landscape restoration in the tropics. Biotropica, 2016, 48, 709-715.	1.6	127
88	Incorporating natural regeneration in forest landscape restoration in tropical regions: synthesis and key research gaps. Biotropica, 2016, 48, 915-924.	1.6	47
89	Forest and landscape restoration: Toward a shared vision and vocabulary. American Journal of Botany, 2016, 103, 1869-1871.	1.7	28
90	Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2016, 2, e1501639.	10.3	423

#	Article	IF	CITATIONS
91	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	27.8	763
92	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 2016, 45, 538-550.	5.5	341
93	Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 2015, 103, 1276-1290.	4.0	50
94	Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery. Remote Sensing, 2015, 7, 5660-5696.	4.0	57
95	Resilience and Alternative Stable States of Tropical Forest Landscapes under Shifting Cultivation Regimes. PLoS ONE, 2015, 10, e0137497.	2.5	18
96	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
97	Successional dynamics in Neotropical forests are as uncertain as they are predictable. Proceedings of the United States of America, 2015, 112, 8013-8018.	7.1	272
98	Restoring Tropical Forests: A Practical Guide. Ecological Restoration, 2015, 33, 118-119.	0.5	3
99	Unveiling the speciesâ€rank abundance distribution by generalizing the Goodâ€Turing sample coverage theory. Ecology, 2015, 96, 1189-1201.	3.2	70
100	The potential of secondary forests. Science, 2015, 348, 642-643.	12.6	41
101	From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain World. Conservation Letters, 2015, 8, 368-377.	5.7	183
102	Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecological Applications, 2015, 25, 506-516.	3.8	68
103	Radial changes in wood specific gravity of tropical trees: inter―and intraspecific variation during secondary succession. Functional Ecology, 2015, 29, 111-120.	3.6	60
104	Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica. PLoS ONE, 2015, 10, e0126748.	2.5	45
105	Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest. PLoS ONE, 2014, 9, e83284.	2.5	55
106	Historical Patterns of Natural Forest Management in Costa Rica: The Good, the Bad and the Ugly. Forests, 2014, 5, 1777-1797.	2.1	11
107	Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5616-5621.	7.1	160
108	Corrigendum to "The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession― Ecology Letters, 2014, 17, 1478-1478.	6.4	6

#	Article	lF	CITATIONS
109	Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method. Ecology Letters, 2014, 17, 1591-1601.	6.4	50
110	Throughfall heterogeneity in tropical forested landscapes as a focal mechanism for deep percolation. Journal of Hydrology, 2014, 519, 2180-2188.	5.4	32
111	Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8101-8106.	7.1	138
112	Viewing forests through the lens of complex systems science. Ecosphere, 2014, 5, 1-23.	2.2	182
113	The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecology Letters, 2014, 17, 1158-1167.	6.4	173
114	* Effects of Human Activities on Successional Pathways. , 2014, , 129-140.		2
115	Detecting landscape-level changes in tree biomass and biodiversity: methodological constraints and challenges of plot-based approaches. Canadian Journal of Forest Research, 2013, 43, 799-808.	1.7	12
116	Making Tropical Succession and Landscape Reforestation Successful. Journal of Sustainable Forestry, 2013, 32, 649-658.	1.4	28
117	Plant βâ€diversity in fragmented rain forests: testing floristic homogenization and differentiation hypotheses. Journal of Ecology, 2013, 101, 1449-1458.	4.0	189
118	Land cover dynamics following a deforestation ban in northern Costa Rica. Environmental Research Letters, 2013, 8, 034017.	5.2	80
119	solarcalc 7.0: An enhanced version of a program for the analysis of hemispherical canopy photographs. Computers and Electronics in Agriculture, 2013, 97, 15-20.	7.7	18
120	Quantifying temporal change in biodiversity: challenges and opportunities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121931.	2.6	178
121	Tropical Forest Regeneration. , 2013, , 277-286.		6
122	Successional variation in carbon content and wood specific gravity of four tropical tree species. Bosque, 2013, 34, 9-10.	0.3	6
123	Estructura, composición y diversidad vegetal en bosques tropicales del Corredor Biológico Osa, Costa Rica. Revista Forestal Mesoamericana Kurú, 2013, 10, 1.	0.1	3
124	Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 2012, 5, 3-21.	2.3	1,476
125	Phylogenetic community structure during succession: Evidence from three Neotropical forest sites. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 79-87.	2.7	89
126	Demographic drivers of successional changes in phylogenetic structure across lifeâ€history stages in plant communities. Ecology, 2012, 93, S70.	3.2	106

#	Article	IF	CITATIONS
127	Tree growth and death in a tropical gallery forest in Brazil: understanding the relationships among size, growth, and survivorship for understory and canopy dominant species. Plant Ecology, 2012, 213, 1081-1092.	1.6	9
128	Life History Traits of Lianas During Tropical Forest Succession. Biotropica, 2012, 44, 720-727.	1.6	21
129	Biomasa sobre el suelo y carbono orgánico en el suelo en cuatro estadios de sucesión de bosques en la PenÃnsula de Osa, Costa Rica. Revista Forestal Mesoamericana Kurú, 2012, 9, 22.	0.1	4
130	Diversidad y estructura horizontal en los bosques tropicales del Corredor Biológico de Osa, Costa Rica. Revista Forestal Mesoamericana Kurú, 2012, 9, 19.	0.1	8
131	Seasonally Dry Tropical Forest Biodiversity and Conservation Value in Agricultural Landscapes of Mesoamerica. , 2011, , 195-219.		20
132	Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass. Remote Sensing of Environment, 2011, 115, 2836-2849.	11.0	191
133	A novel statistical method for classifying habitat generalists and specialists. Ecology, 2011, 92, 1332-1343.	3.2	203
134	Restoring Forests, Livelihoods, and Resilience in Tropical Landscapes. Biotropica, 2011, 43, 764-764.	1.6	0
135	Contrasting community compensatory trends in alternative successional pathways in central Amazonia. Oikos, 2011, 120, 143-151.	2.7	56
136	Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function. , 2011, 21, 1120-1137.		49
137	Trait similarity, shared ancestry and the structure of neighbourhood interactions in a subtropical wet forest: implications for community assembly. Ecology Letters, 2010, 13, 1503-1514.	6.4	184
138	Biodiversity conservation in human-modified landscapes of Mesoamerica: Past, present and future. Biological Conservation, 2010, 143, 2301-2313.	4.1	162
139	Composition and Dynamics of Functional Groups of Trees During Tropical Forest Succession in Northeastern Costa Rica. Biotropica, 2010, 42, 31-40.	1.6	121
140	Proximity is not a proxy for parentage in an animal-dispersed Neotropical canopy palm. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2037-2044.	2.6	35
141	Beyond Reserves: A Research Agenda for Conserving Biodiversity in Humanâ€modified Tropical Landscapes. Biotropica, 2009, 41, 142-153.	1.6	417
142	Rapid Recovery of Biomass, Species Richness, and Species Composition in a Forest Chronosequence in Northeastern Costa Rica. Biotropica, 2009, 41, 608-617.	1.6	264
143	Small Tentâ€Roosting Bats Promote Dispersal of Largeâ€Seeded Plants in a Neotropical Forest. Biotropica, 2009, 41, 737-743.	1.6	75
144	Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 2009, 12, 385-394.	6.4	255

#	Article	IF	CITATIONS
145	Prospects for tropical forest biodiversity in a humanâ€modified world. Ecology Letters, 2009, 12, 561-582.	6.4	735
146	Vulnerability and Resilience of Tropical Forest Species to Landâ€Use Change. Conservation Biology, 2009, 23, 1438-1447.	4.7	90
147	The Potential for Species Conservation in Tropical Secondary Forests. Conservation Biology, 2009, 23, 1406-1417.	4.7	489
148	Lianas and self-supporting plants during tropical forest succession. Forest Ecology and Management, 2009, 257, 2150-2156.	3.2	81
149	Rain forest nutrient cycling and productivity in response to largeâ€scale litter manipulation. Ecology, 2009, 90, 109-121.	3.2	92
150	Beyond Deforestation: Restoring Forests and Ecosystem Services on Degraded Lands. Science, 2008, 320, 1458-1460.	12.6	1,226
151	A Twoâ€Stage Probabilistic Approach to Multipleâ€Community Similarity Indices. Biometrics, 2008, 64, 1178-1186.	1.4	168
152	Integrating Agricultural Landscapes with Biodiversity Conservation in the Mesoamerican Hotspot. Conservation Biology, 2008, 22, 8-15.	4.7	382
153	Correlates of extinction proneness in tropical angiosperms. Diversity and Distributions, 2008, 14, 1-10.	4.1	106
154	Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests. Forest Ecology and Management, 2008, 255, 3716-3725.	3.2	107
155	Assessing Recovery Following Selective Logging of Lowland Tropical Forests Based on Hyperspectral Imagery. , 2008, , 193-212.		0
156	MULTIGENERATIONAL GENETIC ANALYSIS OF TROPICAL SECONDARY REGENERATION IN A CANOPY PALM. Ecology, 2007, 88, 3065-3075.	3.2	45
157	Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 273-289.	4.0	441
158	Effects of vegetation cover on seedling and sapling dynamics in secondary tropical wet forests in Costa Rica. Journal of Tropical Ecology, 2006, 22, 65-76.	1.1	52
159	Juvenile tree growth in relation to light availability in second-growth tropical rain forests. Journal of Tropical Ecology, 2006, 22, 223-226.	1.1	10
160	A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest. Oikos, 2006, 112, 131-137.	2.7	62
161	Editorial: All in a Day's Work. Biotropica, 2006, 38, 709-710.	1.6	0
162	Abundance-Based Similarity Indices and Their Estimation When There Are Unseen Species in Samples. Biometrics, 2006, 62, 361-371.	1.4	474

#	Article	IF	CITATIONS
163	Successional dynamics of woody seedling communities in wet tropical secondary forests. Journal of Ecology, 2005, 93, 1071-1084.	4.0	96
164	Inner-crown Microenvironments of Two Emergent Tree Species in a Lowland Wet Forest1. Biotropica, 2005, 37, 238-244.	1.6	71
165	Vegetation Structure, Composition, and Species Richness Across a 56-year Chronosequence of Dry Tropical Forest on Providencia Island, Colombia1. Biotropica, 2005, 37, 520-530.	1.6	95
166	Light-dependent seedling survival and growth of four tree species in Costa Rican second-growth rain forests. Journal of Tropical Ecology, 2005, 21, 383-395.	1.1	44
167	EFFECTS OF CLIMATE AND STAND AGE ON ANNUAL TREE DYNAMICS IN TROPICAL SECOND-GROWTH RAIN FORESTS. Ecology, 2005, 86, 1808-1815.	3.2	87
168	Genetic Consequences of Tropical Second-Growth Forest Regeneration. Science, 2005, 307, 891-891.	12.6	83
169	A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters, 2004, 8, 148-159.	6.4	1,470
170	Rapid assessment of understory light availability in a wet tropical forest. Agricultural and Forest Meteorology, 2004, 123, 177-185.	4.8	50
171	COMMUNITY AND PHYLOGENETIC STRUCTURE OF REPRODUCTIVE TRAITS OF WOODY SPECIES IN WET TROPICAL FORESTS. Ecological Monographs, 2003, 73, 331-348.	5.4	152
172	Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 6, 51-71.	2.7	797
173	Sexes show contrasting patterns of leaf and crown carbon gain in a dioecious rainforest shrub. American Journal of Botany, 2003, 90, 347-355.	1.7	43
174	Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia, 2002, 131, 165-174.	2.0	229
175	Estimation of tropical forest structural characteristics using large-footprint lidar. Remote Sensing of Environment, 2002, 79, 305-319.	11.0	555
176	FOREST STRUCTURE, CANOPY ARCHITECTURE, AND LIGHT TRANSMITTANCE IN TROPICAL WET FORESTS. Ecology, 2001, 82, 2707-2718.	3.2	249
177	Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests. Ecology, 2001, 82, 2707.	3.2	15
178	Ethnobotany of Woody Species in Second-Growth, Old-Growth, and Selectively Logged Forests of Northeastern Costa Rica. Conservation Biology, 1999, 13, 1312-1322.	4.7	94
179	Interspecific and intraspecific variation in tree seedling survival: effects of allocation to roots versus carbohydrate reserves. Oecologia, 1999, 121, 1-11.	2.0	263
180	SPATIAL HETEROGENEITY OF LIGHT AND WOODY SEEDLING REGENERATION IN TROPICAL WET FORESTS. Ecology, 1999, 80, 1908-1926.	3.2	306

#	Article	IF	CITATIONS
181	Species Richness, Spatial Variation, and Abundance of the Soil Seed Bank of a Secondary Tropical Rain Forest1. Biotropica, 1998, 30, 214-222.	1.6	88
182	Long-Term Effects of Forest Regrowth and Selective Logging on the Seed Bank of Tropical Forests in NE Costa Rica1 Biotropica, 1998, 30, 223-237.	1.6	69
183	A tropical rain forest feast. Trends in Ecology and Evolution, 1998, 13, 421-422.	8.7	1
184	Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. American Journal of Botany, 1997, 84, 1542-1552.	1.7	56
185	Tropical Forest Plant Ecophysiology Ecology, 1997, 78, 965.	3.2	46
186	Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology, 1997, 132, 107-120.	1.6	187
187	Patterns of genotypic variation and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. American Journal of Botany, 1997, 84, 1542.	1.7	13
188	Photosynthetic Responses of Tropical Forest Plants to Contrasting Light Environments. , 1996, , 5-55.		184
189	Spatial heterogeneity in tropical forest structure: canopy palms as landscape mosaics. Trends in Ecology and Evolution, 1996, 11, 8-9.	8.7	13
190	Effects of canopy species dominance on understorey light availability in low-elevation secondary forest stands in Costa Rica. Journal of Tropical Ecology, 1996, 12, 779-788.	1.1	37
191	Photosynthetic Utilization of Sunflecks: A Temporally Patchy Resource on a Time Scale of Seconds to Minutes. , 1994, , 175-208.		89
192	Ecological, behavioural and nutritional factors influencing use of palms as host plants by a Neotropical forest grasshopper. Journal of Tropical Ecology, 1993, 9, 183-197.	1.1	17
193	An Ecological Perspective on Climbing Plants. Ecology, 1992, 73, 2337-2338.	3.2	0
194	Patterns of Growth and Reproduction of Geonoma congesta, a Clustered Understory Palm. Biotropica, 1992, 24, 43.	1.6	51
195	Photosynthetic plasticity of two rain forest shrubs across natural gap transects. Oecologia, 1992, 92, 586-595.	2.0	94
196	The Importance of Sunflecks for Forest Understory Plants. BioScience, 1991, 41, 760-766.	4.9	371
197	Effects of Leaf and Ramet Removal on Growth and Reproduction of Geonoma Congesta, A Clonal Understorey Palm. Journal of Ecology, 1991, 79, 1137.	4.0	52
198	PLANT SIZE AND FORM IN THE UNDERSTORY PALM GENUS GEONOMA: ARE SPECIES VARIATIONS ON A THEME?. American Journal of Botany, 1991, 78, 680-694.	1.7	37

#	Article	IF	CITATIONS
199	Bridging the Gap Between Rain Forest Regeneration and Management. Ecology, 1991, 72, 1520-1521.	3.2	0
200	Plant Size and Form in the Understory Palm Genus Geonoma: Are Species Variations on a Theme?. American Journal of Botany, 1991, 78, 680.	1.7	17
201	Methods and Instruments for Plant Ecophysiology. Ecology, 1990, 71, 828-829.	3.2	0
202	Interactions between Crown Structure and Light Environment in Five Rain Forest Piper Species. American Journal of Botany, 1988, 75, 1459.	1.7	33
203	Sunflecks and Their Importance to Forest Understorey Plants. Advances in Ecological Research, 1988, 18, 1-63.	2.7	427
204	INTERACTIONS BETWEEN CROWN STRUCTURE AND LIGHT ENVIRONMENT IN FIVE RAIN FOREST PIPER SPECIES. American Journal of Botany, 1988, 75, 1459-1471.	1.7	38
205	Determinants of photosynthetic capacity in six rainforest Piper species. Oecologia, 1987, 73, 222-230.	2.0	109
206	Photographic estimation of photosynthetically active radiation: evaluation of a computerized technique. Oecologia, 1987, 73, 525-532.	2.0	220
207	Photosynthetic Utilization of Lightflecks by Tropical Forest Plants. , 1987, , 257-260.		7
208	The Costs of Leaf Support in Understory Palms: Economy Versus Safety. American Naturalist, 1986, 127, 9-30.	2.1	92
209	Photosynthetic responses to light variation in rainforest species. Oecologia, 1986, 69, 517-523.	2.0	207
210	Photosynthetic responses to light variation in rainforest species. Oecologia, 1986, 69, 524-531.	2.0	196
211	Light Variation and Carbon Gain in Rain Forest Understorey Palms. Journal of Ecology, 1986, 74, 995.	4.0	181
212	LEAF DISPLAY, CANOPY STRUCTURE, AND LIGHT INTERCEPTION OF TWO UNDERSTORY PALM SPECIES. American Journal of Botany, 1985, 72, 1493-1502.	1.7	80
213	Leaf Display, Canopy Structure, and Light Interception of Two Understory Palm Species. American Journal of Botany, 1985, 72, 1493.	1.7	41
214	Photosynthetic Light Environments in a Lowland Tropical Rain Forest in Costa Rica. Journal of Ecology, 1984, 72, 553.	4.0	527
215	Ecological Aspects of the Distribution of C 4 Grasses in Selected Habitats of Costa Rica. Biotropica, 1978, 10, 265.	1.6	68
216	The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restoration Ecology, 0, , e13535.	2.9	36

#	Article	IF	CITATIONS
217	Forest and landscape restoration monitoring frameworks: how principled are they?. Restoration Ecology, 0, , 13572.	2.9	3