List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/591257/publications.pdf Version: 2024-02-01

HONCRING YAN

#	Article	IF	CITATIONS
1	A highly stretchable, transparent, and conductive polymer. Science Advances, 2017, 3, e1602076.	10.3	962
2	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	13.7	654
3	Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. Journal of the American Chemical Society, 2018, 140, 5280-5289.	13.7	464
4	Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nature Materials, 2012, 11, 536-543.	27.5	281
5	Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nature Communications, 2019, 10, 5384.	12.8	249
6	Flow-enhanced solution printing of all-polymer solar cells. Nature Communications, 2015, 6, 7955.	12.8	221
7	Rollâ€ŧoâ€Roll Printed Largeâ€Area Allâ€Polymer Solar Cells with 5% Efficiency Based on a Low Crystallinity Conjugated Polymer Blend. Advanced Energy Materials, 2017, 7, 1602742.	19.5	214
8	A Twisted Thieno[3,4â€ <i>b</i>]thiopheneâ€Based Electron Acceptor Featuring a 14â€Ï€â€Electron Indenoinden Core for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2017, 29, 1704510.	e _{21.0}	196
9	Nanomorphology of Bulk Heterojunction Photovoltaic Thin Films Probed with Resonant Soft X-ray Scattering. Nano Letters, 2010, 10, 2863-2869.	9.1	182
10	Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16% via tuning polymer blend morphology by molecular design. Nature Communications, 2021, 12, 5264.	12.8	170
11	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	27.8	170
12	A Highly Stretchable and Selfâ€Healing Supramolecular Elastomer Based on Sliding Crosslinks and Hydrogen Bonds. Advanced Functional Materials, 2020, 30, 1907139.	14.9	165
13	Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering. ACS Nano, 2012, 6, 677-688.	14.6	149
14	Tunable Polyanilineâ€Based Porous Carbon with Ultrahigh Surface Area for CO ₂ Capture at Elevated Pressure. Advanced Energy Materials, 2016, 6, 1502491.	19.5	129
15	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	14.9	120
16	Color-neutral, semitransparent organic photovoltaics for power window applications. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21147-21154.	7.1	109
17	Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices. Advanced Functional Materials, 2010, 20, 4329-4337.	14.9	105
18	Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly(Tetrathienoaceneâ€diketopyrrolopyrrole) Polymers. Advanced Electronic Materials, 2017, 3, 1600311.	5.1	89

#	Article	IF	CITATIONS
19	Comparison of the Morphology Development of Polymer–Fullerene and Polymer–Polymer Solar Cells during Solution‧hearing Blade Coating. Advanced Energy Materials, 2016, 6, 1601225.	19.5	79
20	Achieving Balanced Crystallization Kinetics of Donor and Acceptor by Sequentialâ€Blade Coated Double Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000826.	19.5	77
21	Rapid flame doping of Co to WS ₂ for efficient hydrogen evolution. Energy and Environmental Science, 2018, 11, 2270-2277.	30.8	74
22	All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive. Chemistry of Materials, 2016, 28, 5037-5042.	6.7	69
23	Strain- and Strain-Rate-Invariant Conductance in a Stretchable and Compressible 3D Conducting Polymer Foam. Matter, 2019, 1, 205-218.	10.0	58
24	Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties. Nature Communications, 2015, 6, 6212.	12.8	57
25	Electric Field Tuning Molecular Packing and Electrical Properties of Solutionâ€ 5 hearing Coated Organic Semiconducting Thin Films. Advanced Functional Materials, 2017, 27, 1605503.	14.9	47
26	Molecular packing control enables excellent performance and mechanical property of blade-cast all-polymer solar cells. Nano Energy, 2019, 59, 277-284.	16.0	47
27	Tuning Conjugated Polymer Chain Packing for Stretchable Semiconductors. Advanced Materials, 2022, 34, e2104747.	21.0	47
28	High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS Central Science, 2021, 7, 1657-1667.	11.3	43
29	Interfacial Widths of Conjugated Polymer Bilayers. Journal of the American Chemical Society, 2009, 131, 12538-12539.	13.7	42
30	Accurate and Facile Determination of the Index of Refraction of Organic Thin Films Near the Carbon <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1</mml:mn><mml:mi>s</mml:mi></mml:math> Absorption Edge. Physical Review Letters, 2013, 110, 177401.	7.8	42
31	Sequential Doping of Ladder-Type Conjugated Polymers for Thermally Stable n-Type Organic Conductors. ACS Applied Materials & Interfaces, 2020, 12, 53003-53011.	8.0	41
32	Impact of Polymer Side Chain Modification on OPV Morphology and Performance. Chemistry of Materials, 2018, 30, 7872-7884.	6.7	38
33	Compact Roll-to-Roll Coater for in Situ X-ray Diffraction Characterization of Organic Electronics Printing. ACS Applied Materials & Interfaces, 2016, 8, 1687-1694.	8.0	35
34	Importance of Nucleation during Morphology Evolution of the Blade-Cast PffBT4T-2OD-Based Organic Solar Cells. Macromolecules, 2018, 51, 6682-6691.	4.8	34
35	Multivalent Assembly of Flexible Polymer Chains into Supramolecular Nanofibers. Journal of the American Chemical Society, 2020, 142, 16814-16824.	13.7	33
36	Metal–Ligand Based Mechanophores Enhance Both Mechanical Robustness and Electronic Performance of Polymer Semiconductors. Advanced Functional Materials, 2021, 31, 2009201.	14.9	30

#	Article	IF	CITATIONS
37	Interfaces in organic devices studied with resonant soft x-ray reflectivity. Journal of Applied Physics, 2011, 110, .	2.5	27
38	Enhancing Molecular Alignment and Charge Transport of Solutionâ€Sheared Semiconducting Polymer Films by the Electricalâ€Blade Effect. Advanced Electronic Materials, 2018, 4, 1800110.	5.1	27
39	Fine Optimization of Morphology Evolution Kinetics with Binary Additives for Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Science, 2019, 6, 1801560.	11.2	26
40	Impact of Isomer Design on Physicochemical Properties and Performance in High-Efficiency All-Polymer Solar Cells. Macromolecules, 2020, 53, 9026-9033.	4.8	25
41	Characterization of multicomponent polymer trilayers with resonant soft Xâ€ray reflectivity. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1291-1299.	2.1	24
42	Solution-Phase Conformation and Dynamics of Conjugated Isoindigo-Based Donor–Acceptor Polymer Single Chains. Journal of Physical Chemistry Letters, 2017, 8, 5479-5486.	4.6	24
43	Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the Allâ€Polymer Solar Cell Performance. Advanced Energy Materials, 2018, 8, 1701552.	19.5	21
44	Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules, 2018, 51, 4325-4340.	4.8	21
45	Influence of dielectric-dependent interfacial widths on device performance in top-gate P(NDI2OD-T2) field-effect transistors. Applied Physics Letters, 2012, 101, 093308.	3.3	18
46	Termination and hydration of forsteritic olivine (0 1 0) surface. Geochimica Et Cosmochimica Acta, 2014, 145, 268-280.	3.9	16
47	Tuning domain size and crystallinity in isoindigo/PCBM organic solar cells via solution shearing. Organic Electronics, 2017, 40, 79-87.	2.6	16
48	Topographic measurement of buried thin-film interfaces using a grazing resonant soft x-ray scattering technique. Physical Review B, 2014, 90, .	3.2	15
49	Controlling Polymer Morphology in Blade-Coated All-Polymer Solar Cells. Chemistry of Materials, 2021, 33, 5951-5961.	6.7	14
50	Regulating crystallization to maintain balanced carrier mobility via ternary strategy in blade-coated flexible organic solar cells. Organic Electronics, 2021, 89, 106027.	2.6	12
51	Fullerene derivative induced morphology of bulk heterojunction blends: PIPCP:PC ₆₁ BM. RSC Advances, 2019, 9, 4106-4112.	3.6	10
52	Revealing temperature-dependent polymer aggregation in solution with small-angle X-ray scattering. Journal of Materials Chemistry A, 2022, 10, 2096-2104.	10.3	8
53	The case for soft X-rays: Improved compositional contrast for structure and morphology determination with real and reciprocal space methods. IOP Conference Series: Materials Science and Engineering, 2010, 14, 012020.	0.6	6
54	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 2021, 46, 380-393.	3.5	5

#	Article	IF	CITATIONS
55	Effect of Extensional Flow on the Evaporative Assembly of a Donor–Acceptor Semiconducting Polymer. ACS Applied Electronic Materials, 2019, 1, 2445-2454.	4.3	4
56	Morphology of Organic Semiconductors Electrically Doped from Solution Using Phosphomolybdic Acid. Chemistry of Materials, 2019, 31, 6677-6683.	6.7	4
57	Engineering Supramolecular Polymer Conformation for Efficient Carbon Nanotube Sorting. Small, 2020, 16, e2000923.	10.0	4
58	Manipulation and statistical analysis of the fluid flow of polymer semiconductor solutions during meniscus-guided coating. MRS Bulletin, 0, , 1-14.	3.5	0
59	Reconfigurable Crosslinking System via Asymmetric Metal-Ligand Coordination Strategy. Polymer Chemistry, 0, , .	3.9	0