Gideon Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909967/publications.pdf

Version: 2024-02-01

402 papers

37,597 citations

92 h-index

3159

178 g-index

441 all docs

441 docs citations

times ranked

441

23487 citing authors

#	Article	IF	CITATIONS
1	Mapping the protonation states of the histidine brace in an AA10 lytic polysaccharide monooxygenase using CW-EPR spectroscopy and DFT calculations. Faraday Discussions, 2022, 234, 336-348.	3.2	5
2	Bicyclic Picomolar OGA Inhibitors Enable Chemoproteomic Mapping of Its Endogenous Post-translational Modifications. Journal of the American Chemical Society, 2022, 144, 832-844.	13.7	15
3	Oxidative desulfurization pathway for complete catabolism of sulfoquinovose by bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
4	Structural Insights into Pixatimod (PG545) Inhibition of Heparanase, a Key Enzyme in Cancer and Viral Infections. Chemistry - A European Journal, 2022, 28, .	3.3	11
5	Synthesis of broad-specificity activity-based probes for <i>exo</i> -β-mannosidases. Organic and Biomolecular Chemistry, 2022, 20, 877-886.	2.8	4
6	Activity-based protein profiling reveals dynamic substrate-specific cellulase secretion by saprotrophic basidiomycetes., 2022, 15, 6.		5
7	Detecting and identifying glycoside hydrolases using cyclophellitol-derived activity-based probes. Methods in Enzymology, 2022, 664, 103-134.	1.0	1
8	The sulfoquinovosyl glycerol binding protein SmoF binds and accommodates plant sulfolipids. Current Research in Structural Biology, 2022, 4, 51-58.	2.2	1
9	Oxidative cleavage of polysaccharides by a termite-derived <i>superoxide dismutase</i> boosts the degradation of biomass by glycoside hydrolases. Green Chemistry, 2022, 24, 4845-4858.	9.0	7
10	The structure of <i>Phocaeicola vulgatus </i> sialic acid acetylesterase. Acta Crystallographica Section D: Structural Biology, 2022, 78, 647-657.	2.3	2
11	Deletion of AA9 Lytic Polysaccharide Monooxygenases Impacts A. nidulans Secretome and Growth on Lignocellulose. Microbiology Spectrum, 2022, 10, .	3.0	2
12	Activity-Based Protein Profiling of Retaining \hat{l}_{\pm} -Amylases in Complex Biological Samples. Journal of the American Chemical Society, 2021, 143, 2423-2432.	13.7	17
13	Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent βâ€∢scp>lâ€∢/scp>Arabinofuranosidase Inhibitor. Angewandte Chemie - International Edition, 2021, 60, 5754-5758.	13.8	16
14	Cysteine Nucleophiles in Glycosidase Catalysis: Application of a Covalent βâ€∢scp>lâ€∢/scp>Arabinofuranosidase Inhibitor. Angewandte Chemie, 2021, 133, 5818-5822.	2.0	3
15	Molecular Basis of Sulfosugar Selectivity in Sulfoglycolysis. ACS Central Science, 2021, 7, 476-487.	11.3	16
16	Fungal GH25 muramidases: New family members with applications in animal nutrition and a crystal structure at 0.78Å resolution. PLoS ONE, 2021, 16, e0248190.	2.5	3
17	Development of Nonâ€Hydrolysable Oligosaccharide Activityâ€Based Inactivators for Endoglycanases: A Case Study on αâ€1,6 Mannanases. Chemistry - A European Journal, 2021, 27, 9519-9523.	3.3	2
18	Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science, 2021, 373, 774-779.	12.6	106

#	Article	IF	CITATIONS
19	Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry - A European Journal, 2021, 27, 16377-16388.	3.3	7
20	Copper Oxygenases. , 2021, , 500-523.		2
21	Cryo-EM structure provides insights into the dimer arrangement of the O-linked \hat{l}^2 -N-acetylglucosamine transferase OGT. Nature Communications, 2021, 12, 6508.	12.8	24
22	Multitasking in the gut: the X-ray structure of the multidomain BbgIII from Bifidobacterium bifidum offers possible explanations for its alternative functions. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1564-1578.	2.3	O
23	Sulfoglycolysis: catabolic pathways for metabolism of sulfoquinovose. Chemical Society Reviews, 2021, 50, 13628-13645.	38.1	22
24	Mannosidase mechanism: at the intersection of conformation and catalysis. Current Opinion in Structural Biology, 2020, 62, 79-92.	5.7	24
25	Structure and function of Bs164 \hat{l}^2 -mannosidase from Bacteroides salyersiae the founding member of glycoside hydrolase family GH164. Journal of Biological Chemistry, 2020, 295, 4316-4326.	3.4	6
26	Discovering the Microbial Enzymes Driving Drug Toxicity with Activity-Based Protein Profiling. ACS Chemical Biology, 2020, 15, 217-225.	3.4	46
27	Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4-epi-Isofagomine. Molecules, 2020, 25, 4025.	3.8	4
28	Activation of O ₂ and H ₂ O ₂ by Lytic Polysaccharide Monooxygenases. ACS Catalysis, 2020, 10, 12760-12769.	11.2	44
29	Structural insights into heparanase activity using a fluorogenic heparan sulfate disaccharide. Chemical Communications, 2020, 56, 13780-13783.	4.1	9
30	Substrate Engagement and Catalytic Mechanisms of N-Acetylglucosaminyltransferase V. ACS Catalysis, 2020, 10, 8590-8596.	11.2	18
31	Mechanistic basis of substrate–O ₂ coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19178-19189.	7.1	42
32	Glycosylated cyclophellitol-derived activity-based probes and inhibitors for cellulases. RSC Chemical Biology, 2020, 1, 148-155.	4.1	13
33	Structure of human endo- \hat{l} ±-1,2-mannosidase (MANEA), an antiviral host-glycosylation target. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29595-29601.	7.1	14
34	Manno- <i>epi</i> -cyclophellitols Enable Activity-Based Protein Profiling of Human α-Mannosidases and Discovery of New Golgi Mannosidase II Inhibitors. Journal of the American Chemical Society, 2020, 142, 13021-13029.	13.7	24
35	Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chemical Biology, 2020, 27, 1199-1206.e5.	5.2	15
36	A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient Highâ€Throughput Screening: Application to ⟨i⟩O⟨/i⟩â€GlcNAc Transferase. Angewandte Chemie - International Edition, 2020, 59, 9601-9609.	13.8	19

#	Article	IF	CITATIONS
37	Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose. Dalton Transactions, 2020, 49, 3413-3422.	3.3	10
38	Selective Fluorogenic \hat{l}^2 -Glucocerebrosidase Substrates for Convenient Analysis of Enzyme Activity in Cell and Tissue Homogenates. ACS Chemical Biology, 2020, 15, 824-829.	3.4	6
39	A Direct Fluorescent Activity Assay for Glycosyltransferases Enables Convenient Highâ€Throughput Screening: Application to O â€GlcNAc Transferase. Angewandte Chemie, 2020, 132, 9688-9696.	2.0	8
40	Rational Design of Mechanism-Based Inhibitors and Activity-Based Probes for the Identification of Retaining $\hat{1}_{\pm}$ - <scp>I</scp> -Arabinofuranosidases. Journal of the American Chemical Society, 2020, 142, 4648-4662.	13.7	33
41	Dynamic Structural Changes Accompany the Production of Dihydroxypropanesulfonate by Sulfolactaldehyde Reductase. ACS Catalysis, 2020, 10, 2826-2836.	11.2	20
42	Discovery of a Fungal Copper Radical Oxidase with High Catalytic Efficiency toward 5-Hydroxymethylfurfural and Benzyl Alcohols for Bioprocessing. ACS Catalysis, 2020, 10, 3042-3058.	11.2	46
43	An Epoxide Intermediate in Glycosidase Catalysis. ACS Central Science, 2020, 6, 760-770.	11.3	34
44	An Overview of the Structure, Mechanism and Specificity of Human Heparanase. Advances in Experimental Medicine and Biology, 2020, 1221, 139-167.	1.6	10
45	A Sulfoglycolytic Entner-Doudoroff Pathway in Rhizobium leguminosarum bv. trifolii SRDI565. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
46	A baculoviral system for the production of human \hat{l}^2 -glucocerebrosidase enables atomic resolution analysis. Acta Crystallographica Section D: Structural Biology, 2020, 76, 565-580.	2.3	4
47	Structure of a GH51 î±- <scp>L</scp> -arabinofuranosidase from <i>Meripilus giganteus</i> : conserved substrate recognition from bacteria to fungi. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1124-1133.	2.3	8
48	Distortion of mannoimidazole supports a B2,5 boat transition state for the family GH125 \hat{l}_{\pm} -1,6-mannosidase from Clostridium perfringens. Organic and Biomolecular Chemistry, 2019, 17, 7863-7869.	2.8	9
49	An overview of activity-based probes for glycosidases. Current Opinion in Chemical Biology, 2019, 53, 25-36.	6.1	76
50	α- <scp>d</scp> -Gal-cyclophellitol cyclosulfamidate is a Michaelis complex analog that stabilizes therapeutic lysosomal α-galactosidase A in Fabry disease. Chemical Science, 2019, 10, 9233-9243.	7.4	11
51	Discovery, activity and characterisation of an AA10 lytic polysaccharide oxygenase from the shipworm symbiont Teredinibacter turnerae. Biotechnology for Biofuels, 2019, 12, 232.	6.2	27
52	The C-Type Lysozyme from the upper Gastrointestinal Tract of Opisthocomus hoatzin, the Stinkbird. International Journal of Molecular Sciences, 2019, 20, 5531.	4.1	5
53	Formation of a Copper(II)–Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H ₂ O ₂ . Journal of the American Chemical Society, 2019, 141, 18585-18599.	13.7	66
54	Inverting family GH156 sialidases define an unusual catalytic motif for glycosidase action. Nature Communications, 2019, 10, 4816.	12.8	13

#	Article	IF	CITATIONS
55	Structural and Functional Characterization of Three Novel Fungal Amylases with Enhanced Stability and pH Tolerance. International Journal of Molecular Sciences, 2019, 20, 4902.	4.1	15
56	Molecular mechanisms regulating O-linked N-acetylglucosamine (O-GlcNAc)–processing enzymes. Current Opinion in Chemical Biology, 2019, 53, 131-144.	6.1	46
57	A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host and Microbe, 2019, 26, 385-399.e9.	11.0	33
58	A Cell-Surface GH9 Endo-Glucanase Coordinates with Surface Glycan-Binding Proteins to Mediate Xyloglucan Uptake in the Gut Symbiont Bacteroides ovatus. Journal of Molecular Biology, 2019, 431, 981-995.	4.2	22
59	Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Organic and Biomolecular Chemistry, 2019, 17, 1817-1821.	2.8	15
60	Dynamic and Functional Profiling of Xylan-Degrading Enzymes in <i>Aspergillus</i> Secretomes Using Activity-Based Probes. ACS Central Science, 2019, 5, 1067-1078.	11.3	34
61	Synthetic and Crystallographic Insight into Exploiting sp 2 Hybridization in the Development of α―l â€Fucosidase Inhibitors. ChemBioChem, 2019, 20, 1365-1368.	2.6	3
62	Structure of <i>Papaver somniferum O</i> -Methyltransferase 1 Reveals Initiation of Noscapine Biosynthesis with Implications for Plant Natural Product Methylation. ACS Catalysis, 2019, 9, 3840-3848.	11.2	23
63	Functionalized Cyclophellitols Are Selective Glucocerebrosidase Inhibitors and Induce a Bona Fide Neuropathic Gaucher Model in Zebrafish. Journal of the American Chemical Society, 2019, 141, 4214-4218.	13.7	28
64	Crystal structure and substrate interactions of an unusual fungal non-CBM carrying GH26 endo-β-mannanase from Yunnania penicillata. Scientific Reports, 2019, 9, 2266.	3.3	17
65	The structure of the AliC GH13 α-amylase from <i>Alicyclobacillus</i> sp. reveals the accommodation of starch branching points in the α-amylase family. Acta Crystallographica Section D: Structural Biology, 2019, 75, 1-7.	2.3	15
66	Structural studies of a surface-entropy reduction mutant of O-GlcNAcase. Acta Crystallographica Section D: Structural Biology, 2019, 75, 70-78.	2.3	5
67	Exploration of Strategies for Mechanismâ€Based Inhibitor Design for Family GH99 <i>endo</i> â€Î±â€Î,2â€Mannanases. Chemistry - A European Journal, 2018, 24, 7464-7473.	3.3	7
68	An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion. Nature Communications, 2018, 9, 756.	12.8	192
69	Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 2018, 14, 306-310.	8.0	269
70	QM/MM Studies into the H ₂ O ₂ -Dependent Activity of Lytic Polysaccharide Monooxygenases: Evidence for the Formation of a Caged Hydroxyl Radical Intermediate. ACS Catalysis, 2018, 8, 1346-1351.	11.2	117
71	<i>Bacteroides thetaiotaomicron</i> generates diverse \hat{l} ±-mannosidase activities through subtle evolution of a distal substrate-binding motif. Acta Crystallographica Section D: Structural Biology, 2018, 74, 394-404.	2.3	8
72	In vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions. Biotechnology for Biofuels, 2018, 11, 45.	6.2	24

#	Article	IF	CITATIONS
73	Structural insight into industrially relevant glucoamylases: flexible positions of starch-binding domains. Acta Crystallographica Section D: Structural Biology, 2018, 74, 463-470.	2.3	12
74	Gluco-1 < i > H < /i> > imidazole: A New Class of Azole-Type \hat{I}^2 -Glucosidase Inhibitor. Journal of the American Chemical Society, 2018, 140, 5045-5048.	13.7	17
75	Discovery and characterization of a sulfoquinovose mutarotase using kinetic analysis at equilibrium by exchange spectroscopy. Biochemical Journal, 2018, 475, 1371-1383.	3.7	18
76	Synthesis and application of a highly branched, mechanism-based 2-deoxy-2-fluoro-oligosaccharide inhibitor of <i>endo</i> -xyloglucanases. Organic and Biomolecular Chemistry, 2018, 16, 8732-8741.	2.8	10
77	Functional and informatics analysis enables glycosyltransferase activity prediction. Nature Chemical Biology, 2018, 14, 1109-1117.	8.0	81
78	Production and spectroscopic characterization of lytic polysaccharide monooxygenases. Methods in Enzymology, 2018, 613, 63-90.	1.0	14
79	From 1,4-Disaccharide to 1,3-Glycosyl Carbasugar: Synthesis of a Bespoke Inhibitor of Family GH99 Endo-α-mannosidase. Organic Letters, 2018, 20, 7488-7492.	4.6	11
80	Structure and function of a glycoside hydrolase family 8 endoxylanase from <i>Teredinibacter turnerae </i> . Acta Crystallographica Section D: Structural Biology, 2018, 74, 946-955.	2.3	10
81	Structure of a Talaromyces pinophilus GH62 arabinofuranosidase in complex with AraDNJ at 1.25â€Ã resolution. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 490-495.	0.8	4
82	Structural and Biochemical Insights into the Function and Evolution of Sulfoquinovosidases. ACS Central Science, 2018, 4, 1266-1273.	11.3	31
83	Spiroâ€epoxyglycosides as Activityâ€Based Probes for Glycoside Hydrolase Family 99 Endomannosidase/Endomannanase. Chemistry - A European Journal, 2018, 24, 9983-9992.	3.3	9
84	Structural Dynamics and Catalytic Properties of a Multimodular Xanthanase. ACS Catalysis, 2018, 8, 6021-6034.	11.2	12
85	Structural studies of the unusual metal-ion site of the GH124 endoglucanase from <i>Ruminiclostridium thermocellum</i> . Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 496-505.	0.8	3
86	Structure of the GH9 glucosidase/glucosaminidase fromVibrio cholerae. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 512-523.	0.8	4
87	Bracing copper for the catalytic oxidation of C–H bonds. Nature Catalysis, 2018, 1, 571-577.	34.4	131
88	Conformational Analysis of the Mannosidase Inhibitor Kifunensine: A Quantum Mechanical and Structural Approach. ChemBioChem, 2017, 18, 1496-1501.	2.6	12
89	Carba-cyclophellitols Are Neutral Retaining-Glucosidase Inhibitors. Journal of the American Chemical Society, 2017, 139, 6534-6537.	13.7	24
90	Structural and functional insight into human O-GlcNAcase. Nature Chemical Biology, 2017, 13, 610-612.	8.0	88

#	Article	IF	Citations
91	Conformational Behaviour of Azasugars Based on Mannuronic Acid. ChemBioChem, 2017, 18, 1297-1304.	2.6	7
92	Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature, 2017, 544, 65-70.	27.8	447
93	Computational Design of Experiment Unveils the Conformational Reaction Coordinate of GH125 α-Mannosidases. Journal of the American Chemical Society, 2017, 139, 1085-1088.	13.7	17
94	Contribution of Shape and Charge to the Inhibition of a Family GH99 <i>endo</i> -Î \pm -1,2-Mannanase. Journal of the American Chemical Society, 2017, 139, 1089-1097.	13.7	17
95	Carbohydrate structure: the rocky road to automation. Current Opinion in Structural Biology, 2017, 44, 39-47.	5 . 7	31
96	Increase of enzyme activity through specific covalent modification with fragments. Chemical Science, 2017, 8, 7772-7779.	7.4	36
97	Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Cell Reports, 2017, 21, 417-430.	6.4	119
98	A Fluorescence Polarization Activity-Based Protein Profiling Assay in the Discovery of Potent, Selective Inhibitors for Human Nonlysosomal Glucosylceramidase. Journal of the American Chemical Society, 2017, 139, 14192-14197.	13.7	50
99	An atypical interaction explains the high-affinity of a non-hydrolyzable S-linked 1,6-α-mannanase inhibitor. Chemical Communications, 2017, 53, 9238-9241.	4.1	6
100	Towards broad spectrum activity-based glycosidase probes: synthesis and evaluation of deoxygenated cyclophellitol aziridines. Chemical Communications, 2017, 53, 12528-12531.	4.1	27
101	1,6-Cyclophellitol Cyclosulfates: A New Class of Irreversible Glycosidase Inhibitor. ACS Central Science, 2017, 3, 784-793.	11.3	43
102	Activity-based probes for functional interrogation of retaining \hat{l}^2 -glucuronidases. Nature Chemical Biology, 2017, 13, 867-873.	8.0	76
103	Functional and structural characterization of a potent <scp>GH</scp> 74 <i>endo</i> å€xyloglucanase from the soil saprophyte <i>Cellvibrio japonicus</i> unravels the first step of xyloglucan degradation. FEBS Journal, 2016, 283, 1701-1719.	4.7	29
104	Exploring the divalent effect in fucosidase inhibition with stereoisomeric pyrrolidine dimers. Organic and Biomolecular Chemistry, 2016, 14, 4718-4727.	2.8	12
105	Analysis of transition state mimicry by tight binding aminothiazoline inhibitors provides insight into catalysis by human O-GlcNAcase. Chemical Science, 2016, 7, 3742-3750.	7.4	33
106	Detection of Active Mammalian GH31 \hat{l} ±-Glucosidases in Health and Disease Using In-Class, Broad-Spectrum Activity-Based Probes. ACS Central Science, 2016, 2, 351-358.	11.3	45
107	On the catalytic mechanisms of lytic polysaccharide monooxygenases. Current Opinion in Chemical Biology, 2016, 31, 195-207.	6.1	195
108	Bacterial \hat{l}^2 -Glucosidase Reveals the Structural and Functional Basis of Genetic Defects in Human Glucocerebrosidase 2 (GBA2). ACS Chemical Biology, 2016, 11, 1891-1900.	3.4	39

#	Article	IF	CITATIONS
109	Activity, stability and 3-D structure of the Cu(<scp>ii</scp>) form of a chitin-active lytic polysaccharide monooxygenase from Bacillus amyloliquefaciens. Dalton Transactions, 2016, 45, 16904-16912.	3.3	50
110	Carbohydrate-active enzymes: sequences, shapes, contortions and cells. Biochemical Society Transactions, 2016, 44, 79-87.	3.4	47
111	Structural dissection of a complex <i>Bacteroides ovatus</i> gene locus conferring xyloglucan metabolism in the human gut. Open Biology, 2016, 6, 160142.	3.6	45
112	Structural and mechanistic insights into a Bacteroides vulgatus retaining N-acetyl- \hat{l}^2 -galactosaminidase that uses neighbouring group participation. Chemical Communications, 2016, 52, 11096-11099.	4.1	18
113	Learning from microbial strategies for polysaccharide degradation. Biochemical Society Transactions, 2016, 44, 94-108.	3.4	77
114	A \hat{l}^2 -Mannanase with a Lysozyme-like Fold and a Novel Molecular Catalytic Mechanism. ACS Central Science, 2016, 2, 896-903.	11.3	39
115	Chemoenzymatic synthesis of 6â€phosphoâ€cyclophellitol as a novel probe of 6â€phosphoâ€Î²â€glucosidases. FE Letters, 2016, 590, 461-468.	EBS 2.8	8
116	The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases. Journal of Biological Chemistry, 2016, 291, 7439-7449.	3.4	102
117	YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. Nature Chemical Biology, 2016, 12, 215-217.	8.0	60
118	Three-dimensional structures of two heavily N-glycosylated <i>Aspergillus</i> p. family GH3 β- <scp>D</scp> -glucosidases. Acta Crystallographica Section D: Structural Biology, 2016, 72, 254-265.	2.3	38
119	A second-generation ferrocene–iminosugar hybrid with improved fucosidase binding properties. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1546-1549.	2.2	18
120	The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 2016, 12, 298-303.	8.0	264
121	A Convenient Approach to Stereoisomeric Iminocyclitols: Generation of Potent Brainâ€Permeable OGA Inhibitors. Angewandte Chemie - International Edition, 2015, 54, 15429-15433.	13.8	41
122	Evidence for a Boat Conformation at the Transition State of GH76 αâ€1,6â€Mannanasesâ€"Key Enzymes in Bacterial and Fungal Mannoprotein Metabolism. Angewandte Chemie - International Edition, 2015, 54, 5378-5382.	13.8	40
123	Q&A: repeat-containing proteins. Nature Structural and Molecular Biology, 2015, 22, 943-945.	8.2	О
124	Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nature Communications, 2015, 6, 10197.	12.8	79
125	Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature, 2015, 517, 165-169.	27.8	427
126	Structural and Kinetic Dissection of the <i>endo</i> â€Î±â€Î,2â€Mannanase Activity of Bacterial GH99 Glycoside Hydrolases from <i>Bacteroides</i> â€spp Chemistry - A European Journal, 2015, 21, 1966-1977.	3.3	17

#	Article	IF	CITATIONS
127	Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications, 2015, 6, 5961.	12.8	254
128	Structural and Functional Characterization of a Novel Family GH115 4-O-Methyl-α-Glucuronidase with Specificity for Decorated Arabinogalactans. Journal of Molecular Biology, 2015, 427, 3935-3946.	4.2	18
129	Three-dimensional structure of a variant`Termamyl-like' <i>Geobacillus stearothermophilus</i> À±-amylase at 1.9â€Ã resolution. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 66-70.	0.8	19
130	The three-dimensional structure of the cellobiohydrolase Cel7A from ⟨i>Aspergillus fumigatus ⟨ i>at 1.5â€Ã resolution. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 114-120.	0.8	19
131	Carbohydrate anomalies in the PDB. Nature Chemical Biology, 2015, 11, 303-303.	8.0	74
132	Structure of the GH76 $\hat{l}\pm$ -mannanase homolog, BT2949, from the gut symbiont i>Bacteroides thetaiotaomicron i>. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 408-415.	2.5	8
133	In vitro and in vivo comparative and competitive activity-based protein profiling of GH29 α- <scp>l</scp> -fucosidases. Chemical Science, 2015, 6, 2782-2789.	7.4	44
134	Privateer: software for the conformational validation of carbohydrate structures. Nature Structural and Molecular Biology, 2015, 22, 833-834.	8.2	301
135	Lytic Polysaccharide Monooxygenases in Biomass Conversion. Trends in Biotechnology, 2015, 33, 747-761.	9.3	233
136	The GH130 Family of Mannoside Phosphorylases Contains Glycoside Hydrolases That Target β-1,2-Mannosidic Linkages in Candida Mannan. Journal of Biological Chemistry, 2015, 290, 25023-25033.	3.4	32
137	Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural and Molecular Biology, 2015, 22, 1016-1022.	8.2	137
138	Exploiting the Hydrophobic Terrain in Fucosidases with Arylâ€Substituted Pyrrolidine Iminosugars. ChemBioChem, 2015, 16, 277-283.	2.6	19
139	Discovery of Selective Smallâ€Molecule Activators of a Bacterial Glycoside Hydrolase. Angewandte Chemie - International Edition, 2014, 53, 13419-13423.	13.8	35
140	A complex gene locus enables xyloglucan utilization in the model saprophyte <scp><i>C</i></scp> <i>ellvibrio japonicusi>C418-433.</i>	2.5	63
141	Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nature Chemical Biology, 2014, 10, 122-126.	8.0	329
142	A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature, 2014, 506, 498-502.	27.8	400
143	Spectroscopic and computational insight into the activation of O ₂ by the mononuclear Cu center in polysaccharide monooxygenases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8797-8802.	7.1	190
144	Combined Inhibitor Freeâ€Energy Landscape and Structural Analysis Reports on the Mannosidase Conformational Coordinate. Angewandte Chemie - International Edition, 2014, 53, 1087-1091.	13.8	39

#	Article	IF	Citations
145	Dissecting conformational contributions to glycosidase catalysis and inhibition. Current Opinion in Structural Biology, 2014, 28, 1-13.	5.7	115
146	Structure and Activity of the <i>Streptomyces coelicolor</i> A3(2) \hat{l}^2 - <i>N</i> -Acetylhexosaminidase Provides Further Insight into GH20 Family Catalysis and Inhibition. Biochemistry, 2014, 53, 1789-1800.	2.5	23
147	Regulators as agents: Modelling personality and power as evidence is brokered to support decisions on environmental risk. Science of the Total Environment, 2014, 466-467, 74-83.	8.0	6
148	Three-dimensional structure of a <i>Streptomyces sviceus</i> GNAT acetyltransferase with similarity to the C-terminal domain of the human GH84 <i>O</i> GlcNAcase. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 186-195.	2.5	29
149	Structural enzymology of <i>Helicobacter pylori </i> methylthioadenosine nucleosidase in the futalosine pathway. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 177-185.	2.5	13
150	Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Current Opinion in Structural Biology, 2013, 23, 660-668.	5.7	175
151	Cracking the code, slowly: the state of carbohydrate-active enzymes in 2013. Current Opinion in Structural Biology, 2013, 23, 649-651.	5.7	9
152	Identifying the Catalytic Acid/Base in GH29 α- <scp>l</scp> -Fucosidase Subfamilies. Biochemistry, 2013, 52, 5857-5864.	2.5	43
153	Structure and activity of the <i>Streptococcus pyogenes</i> family GH1 6-phospho-β-glucosidase SPy1599. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 16-23.	2.5	7
154	αâ€ <scp>L</scp> â€Fucosidase Inhibition by Pyrrolidine–Ferrocene Hybrids: Rationalization of Ligandâ€Binding Properties by Structural Studies. Chemistry - A European Journal, 2013, 19, 9526-9533.	3.3	28
155	Three dimensional structure of a bacterial α-l-fucosidase with a 5-membered iminocyclitol inhibitor. Bioorganic and Medicinal Chemistry, 2013, 21, 4751-4754.	3.0	18
156	Exploring a Multivalent Approach to αâ€≺scp>Lâ€Fucosidase Inhibition. European Journal of Organic Chemistry, 2013, 2013, 7328-7336.	2.4	26
157	The Copper Active Site of CBM33 Polysaccharide Oxygenases. Journal of the American Chemical Society, 2013, 135, 6069-6077.	13.7	170
158	Structural and mechanistic insight into N-glycan processing by endo-α-mannosidase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 781-786.	7.1	74
159	Structural Enzymology of Cellvibrio japonicus Agd31B Protein Reveals α-Transglucosylase Activity in Glycoside Hydrolase Family 31. Journal of Biological Chemistry, 2012, 287, 43288-43299.	3.4	36
160	Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups. Journal of Biological Chemistry, 2012, 287, 28882-28897.	3.4	23
161	Innenrücktitelbild: The Reaction Coordinate of a Bacterial GH47 α-Mannosidase: A Combined Quantum Mechanical and Structural Approach (Angew. Chem. 44/2012). Angewandte Chemie, 2012, 124, 11333-11333.	2.0	O
162	Recent structural and mechanistic insights into post-translational enzymatic glycosylation. Current Opinion in Chemical Biology, 2012, 16, 479-487.	6.1	26

#	Article	IF	Citations
163	How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20889-20894.	7.1	97
164	Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nature Chemistry, 2012, 4, 539-546.	13.6	79
165	The Reaction Coordinate of a Bacterial GH47 αâ€Mannosidase: A Combined Quantum Mechanical and Structural Approach. Angewandte Chemie - International Edition, 2012, 51, 10997-11001.	13.8	57
166	The case of the missing base. Nature Chemical Biology, 2012, 8, 952-953.	8.0	12
167	Fleetamine (3-O-α-d-glucopyranosyl-swainsonine): the synthesis of a hypothetical inhibitor of endo-α-mannosidase. Tetrahedron: Asymmetry, 2012, 23, 992-997.	1.8	5
168	Conformational Analyses of the Reaction Coordinate of Glycosidases. Accounts of Chemical Research, 2012, 45, 308-316.	15.6	212
169	The Crystallization and Structural Analysis of Cellulases (and Other Glycoside Hydrolases). Methods in Enzymology, 2012, 510, 141-168.	1.0	15
170	Three-dimensional structure of a thermophilic family GH11 xylanase from <i>Thermobifida fusca</i> Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 141-144.	0.7	13
171	Genome analyses highlight the different biological roles of cellulases. Nature Reviews Microbiology, 2012, 10, 227-234.	28.6	180
172	Structure of the catalytic core module of the <i>Chaetomium thermophilum</i> family GH6 cellobiohydrolase Cel6A. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 875-882.	2.5	18
173	Structure and Activity of Paenibacillus polymyxa Xyloglucanase from Glycoside Hydrolase Family 44. Journal of Biological Chemistry, 2011, 286, 33890-33900.	3.4	32
174	Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15079-15084.	7.1	861
175	Building Custom Polysaccharides in Vitro with an Efficient, Broad-Specificity Xyloglucan Glycosynthase and a Fucosyltransferase. Journal of the American Chemical Society, 2011, 133, 10892-10900.	13.7	37
176	Structural and enzymatic characterization of a glycoside hydrolase family 31 α-xylosidase from <i>Cellvibrio japonicus</i> involved in xyloglucan saccharification. Biochemical Journal, 2011, 436, 567-580.	3.7	69
177	Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nature Chemical Biology, 2011, 7, 631-638.	8.0	135
178	Inhibition of a bacterial O-GlcNAcase homologue by lactone and lactam derivatives: structural, kinetic and thermodynamic analyses. Amino Acids, 2011, 40, 829-839.	2.7	15
179	Substrate and Metal Ion Promiscuity in Mannosylglycerate Synthase. Journal of Biological Chemistry, 2011, 286, 15155-15164.	3.4	33
180	The O-GlcNAc modification: three-dimensional structure, enzymology and the development of selective inhibitors to probe disease. Biochemical Society Transactions, 2010, 38, 1179-1188.	3.4	7

#	Article	IF	CITATIONS
181	Structural and Thermodynamic Analyses of αâ€∢scp>Lâ€Fucosidase Inhibitors. ChemBioChem, 2010, 11, 1971-1974.	2.6	17
182	Mechanistic Insight into Enzymatic Glycosyl Transfer with Retention of Configuration through Analysis of Glycomimetic Inhibitors. Angewandte Chemie - International Edition, 2010, 49, 1234-1237.	13.8	85
183	Chitinase Inhibition by Chitobiose and Chitotriose Thiazolines. Angewandte Chemie - International Edition, 2010, 49, 2599-2602.	13.8	28
184	Inhibition of O-GlcNAcase Using a Potent and Cell-Permeable Inhibitor Does Not Induce Insulin Resistance in 3T3-L1 Adipocytes. Chemistry and Biology, 2010, 17, 937-948.	6.0	67
185	The structure of a family GH25 lysozyme from <i>Aspergillus fumigatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 973-977.	0.7	11
186	Mechanistic insights into a Ca2+-dependent family of \hat{l}_{\pm} -mannosidases in a human gut symbiont. Nature Chemical Biology, 2010, 6, 125-132.	8.0	115
187	Structure and Kinetic Investigation of Streptococcus pyogenes Family GH38 α-Mannosidase. PLoS ONE, 2010, 5, e9006.	2.5	41
188	Signature Active Site Architectures Illuminate the Molecular Basis for Ligand Specificity in Family 35 Carbohydrate Binding Module,. Biochemistry, 2010, 49, 6193-6205.	2.5	35
189	Circular Permutation Provides an Evolutionary Link between Two Families of Calcium-dependent Carbohydrate Binding Modules. Journal of Biological Chemistry, 2010, 285, 31742-31754.	3.4	36
190	Structural analyses of enzymes involved in the O-GlcNAc modification. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 122-133.	2.4	38
191	Analysis of the Reaction Coordinate of \hat{l} ±- $\langle scp \rangle \langle scp \rangle$ -Fucosidases: A Combined Structural and Quantum Mechanical Approach. Journal of the American Chemical Society, 2010, 132, 1804-1806.	13.7	63
192	Glycosidase inhibition: assessing mimicry of the transition state. Organic and Biomolecular Chemistry, 2010, 8, 305-320.	2.8	217
193	Casuarine-6-O-α-d-glucoside and its analogues are tight binding inhibitors of insect and bacterial trehalases. Chemical Communications, 2010, 46, 2629.	4.1	40
194	Visualizing the Reaction Coordinate of an O-GlcNAc Hydrolase. Journal of the American Chemical Society, 2010, 132, 1807-1809.	13.7	70
195	Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3065-3070.	7.1	109
196	Total Syntheses of Casuarine and Its 6â€ <i>O</i> àꀱâ€Glucoside: Complementary Inhibition towards Glycoside Hydrolases of the GH31 and GH37 Families. Chemistry - A European Journal, 2009, 15, 1627-1636.	3.3	92
197	Structural insight into the mechanism of streptozotocin inhibition of O-GlcNAcase. Carbohydrate Research, 2009, 344, 627-631.	2.3	21
198	Structure of a pullulanase from <i>Bacillus acidopullulyticus</i> Proteins: Structure, Function and Bioinformatics, 2009, 76, 516-519.	2.6	90

#	Article	IF	CITATIONS
199	Insight into a strategy for attenuating AmpCâ€mediated βâ€lactam resistance: Structural basis for selective inhibition of the glycoside hydrolase NagZ. Protein Science, 2009, 18, 1541-1551.	7.6	43
200	The crystal structure of a family GH25 lysozyme from Bacillus anthracis implies a neighboring-group catalytic mechanism with retention of anomeric configuration. Carbohydrate Research, 2009, 344, 1753-1757.	2.3	29
201	Functional Characterization of Xyloglucan Glycosynthases from GH7, GH12, and GH16 Scaffolds. Biomacromolecules, 2009, 10, 1782-1788.	5. 4	23
202	The X-ray Crystal Structure of an Arthrobacter protophormiae Endo- \hat{l}^2 -N-Acetylglucosaminidase Reveals a $(\hat{l}^2/\hat{l}\pm)$ 8 Catalytic Domain, Two Ancillary Domains and Active Site Residues Key for Transglycosylation Activity. Journal of Molecular Biology, 2009, 389, 1-9.	4.2	36
203	Understanding How Diverse Î ² -Mannanases Recognize Heterogeneous Substrates. Biochemistry, 2009, 48, 7009-7018.	2.5	94
204	Structure of the Michaelis complex of \hat{l}^2 -mannosidase, Man2A, provides insight into the conformational itinerary of mannoside hydrolysis. Chemical Communications, 2009, , 2484.	4.1	20
205	Glycosidase inhibition by ring-modified castanospermine analogues: tackling enzyme selectivity by inhibitor tailoring. Organic and Biomolecular Chemistry, 2009, 7, 2738.	2.8	46
206	Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion. Journal of the American Chemical Society, 2009, 131, 5390-5392.	13.7	62
207	The Chitopentaose Complex of a Mutant Hen Egg-White Lysozyme Displays No Distortion of the $\hat{a}\in$ 1 Sugar Away from a 4C1 Chair Conformation. Australian Journal of Chemistry, 2009, 62, 528.	0.9	3
208	The Active Site of a Carbohydrate Esterase Displays Divergent Catalytic and Noncatalytic Binding Functions. PLoS Biology, 2009, 7, e1000071.	5.6	56
209	Crystal structure of a family GT4 glycosyltransferase from <i>Bacillus anthracis</i> ORF BA1558. Proteins: Structure, Function and Bioinformatics, 2008, 73, 784-787.	2.6	25
210	Molecular Basis for βâ€Glucosidase Inhibition by Ringâ€Modified Calystegine Analogues. ChemBioChem, 2008, 9, 2612-2618.	2.6	33
211	Mechanistic insights into glycosidase chemistry. Current Opinion in Chemical Biology, 2008, 12, 539-555.	6.1	363
212	Chemistry's prodigal child: enzyme mechanism. Current Opinion in Chemical Biology, 2008, 12, 529-531.	6.1	0
213	Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora. Chemistry and Biology, 2008, 15, 1058-1067.	6.0	81
214	Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nature Structural and Molecular Biology, 2008, 15, 764-765.	8.2	98
215	Structural and biochemical evidence for a boat-like transition state in \hat{I}^2 -mannosidases. Nature Chemical Biology, 2008, 4, 306-312.	8.0	104
216	A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nature Chemical Biology, 2008, 4, 483-490.	8.0	576

#	Article	IF	CITATIONS
217	Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes. Biochemical Journal, 2008, , 382.	3.7	21
218	Glycosyltransferases: Structures, Functions, and Mechanisms. Annual Review of Biochemistry, 2008, 77, 521-555.	11.1	1,651
219	Probing the \hat{i}^2 -1,3:1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants. Organic and Biomolecular Chemistry, 2008, 6, 851.	2.8	5
220	The Cellvibrio japonicus Mannanase CjMan26C Displays a Unique exo-Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site. Journal of Biological Chemistry, 2008, 283, 34403-34413.	3.4	74
221	The Clostridium cellulolyticum Dockerin Displays a Dual Binding Mode for Its Cohesin Partner. Journal of Biological Chemistry, 2008, 283, 18422-18430.	3.4	71
222	Elevation of Global O-GlcNAc Levels in 3T3-L1 Adipocytes by Selective Inhibition of O-GlcNAcase Does Not Induce Insulin Resistance. Journal of Biological Chemistry, 2008, 283, 34687-34695.	3.4	106
223	Sorting the diverse: The sequencebased classifications of carbohydrateactive enzymes. Biochemist, 2008, 30, 26-32.	0.5	19
224	Characterization and engineering of the bifunctional $\langle i \rangle N \langle i \rangle$ - and $\langle i \rangle O \langle i \rangle$ -glucosyltransferase involved in xenobiotic metabolism in plants. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20238-20243.	7.1	267
225	Mannose Foraging by Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2007, 282, 11291-11299.	3.4	67
226	Characterization and Three-dimensional Structures of Two Distinct Bacterial Xyloglucanases from Families GH5 and GH12. Journal of Biological Chemistry, 2007, 282, 19177-19189.	3.4	103
227	The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5336-5341.	7.1	132
228	D-Glucosylated Derivatives of Isofagomine and Noeuromycin and Their Potential as Inhibitors of \hat{l}^2 -Glycoside Hydrolases. Australian Journal of Chemistry, 2007, 60, 549.	0.9	9
229	Evidence for a dual binding mode of dockerin modules to cohesins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3089-3094.	7.1	124
230	Structural basis for cyclophellitol inhibition of a \hat{l}^2 -glucosidase. Organic and Biomolecular Chemistry, 2007, 5, 444-446.	2.8	45
231	A 1-acetamido derivative of 6-epi-valienamine: an inhibitor of a diverse group of \hat{l}^2 -N-acetylglucosaminidases. Organic and Biomolecular Chemistry, 2007, 5, 3013.	2.8	37
232	Analysis of PUGNAc and NAG-thiazoline as Transition State Analogues for HumanO-GlcNAcase:Â Mechanistic and Structural Insights into Inhibitor Selectivity and Transition State Poise. Journal of the American Chemical Society, 2007, 129, 635-644.	13.7	155
233	Glycosidase Inhibition:Â An Assessment of the Binding of 18 Putative Transition-State Mimics. Journal of the American Chemical Society, 2007, 129, 2345-2354.	13.7	124
234	A Glycosynthase Catalyst for the Synthesis of Flavonoid Glycosides. Angewandte Chemie - International Edition, 2007, 46, 3885-3888.	13.8	71

#	Article	IF	CITATIONS
235	Molecular Basis for Trehalase Inhibition Revealed by the Structure of Trehalase in Complex with Potent Inhibitors. Angewandte Chemie - International Edition, 2007, 46, 4115-4119.	13.8	95
236	Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc–imidazole hybrid inhibitor. Chemical Communications, 2006, , 4372-4374.	4.1	60
237	Structural, Kinetic, and Thermodynamic Analysis of Glucoimidazole-Derived Glycosidase Inhibitorsâ€,‡. Biochemistry, 2006, 45, 11879-11884.	2.5	47
238	Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a \hat{l}^2 -N-acetylglucosaminidase and not a hyaluronidase. Biochemical Journal, 2006, 399, 241-247.	3.7	35
239	Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochemical Journal, 2006, 395, 31-37.	3.7	85
240	Structure of a carbohydrate esterase from Bacillus anthracis. Proteins: Structure, Function and Bioinformatics, 2006, 66, 250-252.	2.6	22
241	Structure and mechanism of a bacterial \hat{l}^2 -glucosaminidase having O-GlcNAcase activity. Nature Structural and Molecular Biology, 2006, 13, 365-371.	8.2	182
242	Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO Journal, 2006, 25, 1396-1405.	7.8	389
243	Insights into the Synthesis of Lipopolysaccharide and Antibiotics through the Structures of Two Retaining Glycosyltransferases from Family GT4. Chemistry and Biology, 2006, 13, 1143-1152.	6.0	105
244	Dissection of Conformationally Restricted Inhibitors Binding to a \hat{I}^2 -Glucosidase. ChemBioChem, 2006, 7, 738-742.	2.6	34
245	Substrate Distortion by a Lichenase Highlights the Different Conformational Itineraries Harnessed by Related Glycoside Hydrolases. Angewandte Chemie - International Edition, 2006, 45, 5136-5140.	13.8	41
246	Crystal Structures of Clostridium thermocellum Xyloglucanase, XGH74A, Reveal the Structural Basis for Xyloglucan Recognition and Degradation. Journal of Biological Chemistry, 2006, 281, 24922-24933.	3.4	79
247	Structure and Activity of Two Metal Ion-dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. Journal of Biological Chemistry, 2006, 281, 10968-10975.	3.4	99
248	Family 6 Carbohydrate Binding Modules in \hat{l}^2 -Agarases Display Exquisite Selectivity for the Non-reducing Termini of Agarose Chains*. Journal of Biological Chemistry, 2006, 281, 17099-17107.	3.4	71
249	Structural dissection and high-throughput screening of mannosylglycerate synthase. Nature Structural and Molecular Biology, 2005, 12, 608-614.	8.2	81
250	Recent structural insights into the expanding world of carbohydrate-active enzymes. Current Opinion in Structural Biology, 2005, 15, 637-645.	5.7	264
251	Structure of aBacillus halmapalusfamily 13 α-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 190-193.	2.5	28
252	Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B fromClostridium thermocellum. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 194-197.	2.5	22

#	Article	IF	CITATIONS
253	Structure and Kinetics of a Monomeric Glucosamine 6-Phosphate Deaminase. Journal of Biological Chemistry, 2005, 280, 19649-19655.	3.4	37
254	Tailored catalysts for plant cell-wall degradation: Redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2697-2702.	7.1	80
255	How Family 26 Glycoside Hydrolases Orchestrate Catalysis on Different Polysaccharides. Journal of Biological Chemistry, 2005, 280, 32761-32767.	3.4	60
256	Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically active triple-stranded Â-helix. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17652-17657.	7.1	67
257	Mycobacterium tuberculosis Strains Possess Functional Cellulases. Journal of Biological Chemistry, 2005, 280, 20181-20184.	3.4	62
258	Probing the Mechanism of Ligand Recognition in Family 29 Carbohydrate-binding Modules. Journal of Biological Chemistry, 2005, 280, 23718-23726.	3.4	33
259	Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochemical Journal, 2005, 390, 19-27.	3.7	135
260	NAD+ and Metal-ion Dependent Hydrolysis by Family 4 Glycosidases: Structural Insight into Specificity for Phospho-Î ² -d-glucosides. Journal of Molecular Biology, 2005, 346, 423-435.	4.2	52
261	Insights into the Structural Determinants of Cohesin—Dockerin Specificity Revealed by the Crystal Structure of the Type II Cohesin from Clostridium thermocellum SdbA. Journal of Molecular Biology, 2005, 349, 909-915.	4.2	34
262	The Donor Subsite of Trehalose-6-phosphate Synthase. Journal of Biological Chemistry, 2004, 279, 1950-1955.	3.4	104
263	The Mechanisms by Which Family 10 Glycoside Hydrolases Bind Decorated Substrates. Journal of Biological Chemistry, 2004, 279, 9597-9605.	3.4	151
264	Structural, Thermodynamic, and Kinetic Analyses of Tetrahydrooxazine-derived Inhibitors Bound to \hat{l}^2 -Glucosidases. Journal of Biological Chemistry, 2004, 279, 49236-49242.	3.4	37
265	The Use of Forced Protein Evolution to Investigate and Improve Stability of Family 10 Xylanases. Journal of Biological Chemistry, 2004, 279, 54369-54379.	3.4	46
266	The Three-dimensional Structure of the N-Acetylglucosamine-6-phosphate Deacetylase, NagA, from Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 2809-2816.	3.4	60
267	Structural and Biochemical Analysis of Cellvibrio japonicus Xylanase 10C. Journal of Biological Chemistry, 2004, 279, 11777-11788.	3.4	86
268	Insights into the Molecular Determinants of Substrate Specificity in Glycoside Hydrolase Family 5 Revealed by the Crystal Structure and Kinetics of Cellvibrio mixtus Mannosidase 5A. Journal of Biological Chemistry, 2004, 279, 25517-25526.	3.4	91
269	A master of its sulfate. Nature Structural and Molecular Biology, 2004, 11, 686-687.	8.2	0
270	Ab Initio Structure Determination and Functional Characterization Of CBM36. Structure, 2004, 12, 1177-1187.	3.3	76

#	Article	IF	Citations
271	Novel Catalytic Mechanism of Glycoside Hydrolysis Based on the Structure of an NAD+/Mn2+-Dependent Phospho-α-Glucosidase from Bacillus subtilis. Structure, 2004, 12, 1619-1629.	3.3	88
272	Crystallization and preliminary X-ray diffraction analysis of levansucrase (LsdA) fromGluconacetobacter diazotrophicusSRT4. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 181-183.	2.5	4
273	Common Inhibition of Both \hat{l}^2 -Glucosidases and \hat{l}^2 -Mannosidases by Isofagomine Lactam Reflects Different Conformational Itineraries for Pyranoside Hydrolysis. ChemBioChem, 2004, 5, 1596-1599.	2.6	38
274	Atomic resolution analyses of the binding of xylobiose-derived deoxynojirimycin and isofagomine to xylanase Xyn10AElectronic supplementary information (ESI) available: kinetics and structural methods. See http://www.rsc.org/suppdata/cc/b4/b405152a/. Chemical Communications, 2004, , 1794.	4.1	26
275	Structural Studies of the \hat{l}^2 -Glycosidase from Sulfolobus solfataricus in Complex with Covalently and Noncovalently Bound Inhibitors $\hat{a} \in \hat{l}$. Biochemistry, 2004, 43, 6101-6109.	2.5	62
276	Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal, 2004, 382, 769-781.	3.7	1,720
277	An Unusual Mechanism of Glycoside Hydrolysis Involving Redox and Elimination Steps by a Family 4 Î ² -Glycosidase fromThermotoga maritima. Journal of the American Chemical Society, 2004, 126, 8354-8355.	13.7	119
278	Ligand-mediated Dimerization of a Carbohydrate-binding Module Reveals a Novel Mechanism for Protein–Carbohydrate Recognition. Journal of Molecular Biology, 2004, 337, 417-426.	4.2	37
279	X-ray Crystal Structure of a Non-crystalline Cellulose-specific Carbohydrate-binding Module: CBM28. Journal of Molecular Biology, 2004, 339, 253-258.	4.2	32
280	Structural and Thermodynamic Dissection of Specific Mannan Recognition by a Carbohydrate Binding Module, TmCBM27. Structure, 2003, 11 , 665-675.	3.3	62
281	Structural Basis for Ligand Binding and Processivity in Cellobiohydrolase Cel6A from Humicola insolens. Structure, 2003, 11, 855-864.	3.3	116
282	Anatomy of Glycosynthesis. Chemistry and Biology, 2003, 10, 619-628.	6.0	67
283	Direct experimental observation of the hydrogen-bonding network of a glycosidase along its reaction coordinate revealed by atomic resolution analyses of endoglucanase Cel5A. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 447-452.	2.5	29
284	Iminosugar Glycosidase Inhibitors:Â Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to \hat{l}^2 -Glucosidases. Journal of the American Chemical Society, 2003, 125, 14313-14323.	13.7	154
285	Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding. Journal of the American Chemical Society, 2003, 125, 7496-7497.	13.7	84
286	Structure and Ligand Binding of Carbohydrate-binding Module CsCBM6-3 Reveals Similarities with Fucose-specific Lectins and "Galactose-binding―Domains. Journal of Molecular Biology, 2003, 327, 659-669.	4.2	65
287	An Evolving Hierarchical Family Classification for Glycosyltransferases. Journal of Molecular Biology, 2003, 328, 307-317.	4.2	1,079
288	Multifunctional Xylooligosaccharide/Cephalosporin C Deacetylase Revealed by the Hexameric Structure of the Bacillus subtilis Enzyme at 1.9Ã Resolution. Journal of Molecular Biology, 2003, 330, 593-606.	4.2	67

#	Article	IF	CITATIONS
289	Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chemical Communications, 2003, , 1327-1329.	4.1	66
290	A xylobiose-derived isofagomine lactam glycosidase inhibitor binds as its amide tautomerElectronic supplementary information (ESI) available: details of data and structure quality for complex of 1 with Xyn10A. See http://www.rsc.org/suppdata/cc/b3/b301829f/. Chemical Communications, 2003, , 944-945.	4.1	13
291	Distortion of a cellobio-derived isofagomine highlights the potential conformational itinerary of inverting \hat{l}^2 -glucosidasesElectronic supplementary information (ESI) available: details of data and structure quality for complex of cel6A with 1. See http://www.rsc.org/suppdata/cc/b3/b301592k/. Chemical Communications, 2003. , 946-947.	4.1	38
292	Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13809-13814.	7.1	230
293	The α-Glucuronidase, GlcA67A, of Cellvibrio japonicus Utilizes the Carboxylate and Methyl Groups of Aldobiouronic Acid as Important Substrate Recognition Determinants. Journal of Biological Chemistry, 2003, 278, 20286-20292.	3.4	32
294	Mapping the conformational itinerary of \hat{l}^2 -glycosidases by X-ray crystallography. Biochemical Society Transactions, 2003, 31, 523-527.	3.4	155
295	Sequence Families and Modular Organization of Carbohydrate-Active Enzymes., 2003,,.		1
296	Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14077-14082.	7.1	89
297	Convergent evolution sheds light on the anti-Â-elimination mechanism common to family 1 and 10 polysaccharide lyases. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12067-12072.	7.1	89
298	Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochemical Society Transactions, 2002, 30, 291-297.	3.4	60
299	Structural genomics of carbohydrate-active enzymes: implications for the synthesis of plant polysaccharides. Biochemical Society Transactions, 2002, 30, A24-A24.	3.4	0
300	Differential Oligosaccharide Recognition by Evolutionarily-related \hat{l}^2 -1,4 and \hat{l}^2 -1,3 Glucan-binding Modules. Journal of Molecular Biology, 2002, 319, 1143-1156.	4.2	135
301	The Structural Basis for Catalysis and Specificity of the Pseudomonas cellulosa α-Glucuronidase, GlcA67A. Structure, 2002, 10, 547-556.	3.3	74
302	Substrate Distortion by a -Mannanase: Snapshots of the Michaelis and Covalent-Intermediate Complexes Suggest a B2,5 Conformation for the Transition State. Angewandte Chemie - International Edition, 2002, 41, 2824-2827.	13.8	127
303	Glycosidase mechanisms. Current Opinion in Chemical Biology, 2002, 6, 619-629.	6.1	349
304	Characterization of Escherichia coli OtsA, a trehalose-6-phosphate synthase from glycosyltransferase family 20. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 349-351.	2.5	20
305	Structure of theHumicola insolenscellobiohydrolase Cel6A D416A mutant in complex with a non-hydrolysable substrate analogue, methyl cellobiosyl-4-thio-β-cellobioside, at 1.9â€Ã Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 2201-2204.	2.5	25
306	Cellvibrio japonicus \hat{l} ±-L-arabinanase 43A has a novel five-blade \hat{l}^2 -propeller fold. Nature Structural Biology, 2002, 9, 665-668.	9.7	157

#	Article	IF	Citations
307	Insights into Trehalose Synthesis Provided by the Structure of the Retaining Glucosyltransferase OtsA. Chemistry and Biology, 2002, 9, 1337-1346.	6.0	164
308	Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 314, 655-661.	4.2	118
309	β-1,3-Glucan Binding by a Thermostable Carbohydrate-Binding Module fromThermotoga maritimaâ€. Biochemistry, 2001, 40, 14679-14685.	2.5	34
310	Clostridium thermocellum Xyn10B Carbohydrate-Binding Module 22-2:  The Role of Conserved Amino Acids in Ligand Binding,. Biochemistry, 2001, 40, 9167-9176.	2.5	80
311	The Enzymatic Synthesis of Glycosidic Bonds: "Glycosynthases" and Glycosyltransferases Trends in Glycoscience and Glycotechnology, 2001, 13, 105-120.	0.1	31
312	Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module. Biochemical Journal, 2001, 355, 155-165.	3.7	41
313	Pectate lyase 10A from Pseudomonas cellulosa is a modular enzyme containing a family 2a carbohydrate-binding module. Biochemical Journal, 2001, 355, 155.	3.7	30
314	Three-Dimensional Structures of UDP-Sugar Glycosyltransferases Illuminate the Biosynthesis of Plant Polysaccharides. Plant Physiology, 2001, 125, 527-531.	4.8	72
315	Structure of the laccase fromCoprinus cinereusat 1.68â€Ã resolution: evidence for different `type 2 Cu-depleted' isoforms. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 333-336.	2.5	67
316	Cloning, purification and characterization of the 6-phospho-3-hexulose isomerase YckF fromBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1138-1140.	2.5	3
317	Characterization of a novel pectate lyase, Pel10A, fromPseudomonas cellulosa. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1141-1143.	2.5	6
318	Oligosaccharide binding to family 11 xylanases: both covalent intermediate and mutant product complexes display2,5Bconformations at the active centre. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1344-1347.	2.5	36
319	Atomic resolution structure of endoglucanase Cel5A in complex with methyl 4,4II,4III,4IV-tetrathio-α-cellopentoside highlights the alternative binding modes targeted by substrate mimics. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1739-1742.	2.5	24
320	Mixed-Linkage Cellooligosaccharides: A New Class of Glycoside Hydrolase Inhibitors. ChemBioChem, 2001, 2, 319-325.	2.6	20
321	Structure of a Family 15 Carbohydrate-binding Module in Complex with Xylopentaose. Journal of Biological Chemistry, 2001, 276, 49061-49065.	3.4	90
322	A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Molecular Biology, 2001, 47, 55-72.	3.9	190
323	Sweet secrets of synthesis. , 2001, 8, 98-100.		34
324	Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature, 2001, 412, 835-838.	27.8	588

#	Article	IF	Citations
325	Protein–carbohydrate interactions: learning lessons from nature. Trends in Biotechnology, 2001, 19, 356-362.	9.3	82
326	The Structure of the Feruloyl Esterase Module of Xylanase 10B from Clostridium thermocellum Provides Insights into Substrate Recognition. Structure, 2001, 9, 1183-1190.	3.3	112
327	A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. , 2001, , 55-72.		80
328	A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Molecular Biology, 2001, 47, 55-72.	3.9	84
329	Structural enzymology of carbohydrate-active enzymes: implications for the post-genomic era. Biochemical Society Transactions, 2001, 30, 291.	3.4	0
330	Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6ÂÃ resolution. Biochemical Journal, 2000, 348, 201.	3.7	24
331	Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6ÂÃ resolution. Biochemical Journal, 2000, 348, 201-207.	3.7	61
332	A new variant of the Ntn hydrolase fold revealed by the crystal structure of l-aminopeptidase d-Ala-esterase/amidase from Ochrobactrum anthropi. Structure, 2000, 8, 153-162.	3.3	43
333	Substrate Specificity in Glycoside Hydrolase Family 10. Journal of Biological Chemistry, 2000, 275, 23020-23026.	3.4	70
334	Substrate Specificity in Glycoside Hydrolase Family 10. Journal of Biological Chemistry, 2000, 275, 23027-23033.	3.4	51
335	Glycoside Hydrolases and Glycosyltransferases. Families, Modules, and Implications for Genomics. Plant Physiology, 2000, 124, 1515-1519.	4.8	251
336	Insights into ligand-induced conformational change in Cel5A from Bacillus agaradhaerens revealed by a catalytically active crystal form. Journal of Molecular Biology, 2000, 297, 819-828.	4.2	46
337	Highly Efficient Synthesis of $\hat{I}^2(1 \hat{a}^{\dagger}, 4)$ -Oligo- and -Polysaccharides Using a Mutant Cellulase. Journal of the American Chemical Society, 2000, 122, 5429-5437.	13.7	149
338	The X6 "Thermostabilizing―Domains of Xylanases Are Carbohydrate-Binding Modules:  Structure and Biochemistry of the Clostridium thermocellum X6b Domain,. Biochemistry, 2000, 39, 5013-5021.	2.5	154
339	Structural Analysis of a Chimeric Bacterial α-Amylase. High-Resolution Analysis of Native and Ligand Complexesâ€,‡. Biochemistry, 2000, 39, 9099-9107.	2.5	126
340	Structure and function of Humicola insolens family 6 cellulases: structure of the endoglucanase, Cel6B, at 1.6 A resolution. Biochemical Journal, 2000, 348 Pt 1, 201-7.	3.7	19
341	Catalysis and specificity in enzymatic glycoside hydrolysis: a 2,5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chemistry and Biology, 1999 , 6 , 483 - 492 .	6.0	114
342	Cloning, crystallization and preliminary X-ray analysis of a nucleotide-diphospho-sugar transferase spsA fromBacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 677-678.	2.5	3

#	Article	IF	CITATIONS
343	Crystallization and preliminary X-ray crystallographic analysis of aTrichoderma reeseil̂²-mannanase from glycoside hydrolase family 5. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1058-1060.	2.5	1
344	Crystallization and preliminary X-ray analysis of the 6-phospho-α-glucosidase from Bacillus subtilis. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1212-1214.	2.5	10
345	Trapped in the act of catalysis. , 1999, 6, 406-408.		11
346	The Crystal Structure of a 2-Fluorocellotriosyl Complex of theStreptomyceslividansEndoglucanase CelB2 at 1.2 à Resolutionâ€,‡. Biochemistry, 1999, 38, 4826-4833.	2.5	56
347	Structural Changes of the Active Site Tunnel of Humicola insolens Cellobiohydrolase, Cel6A, upon Oligosaccharide Binding,. Biochemistry, 1999, 38, 8884-8891.	2.5	83
348	X-ray Structure of Novamyl, the Five-Domain "Maltogenicâ€Î±-Amylase fromBacillus stearothermophilus:Â Maltose and Acarbose Complexes at 1.7 à Resolutionâ€,‡. Biochemistry, 1999, 38, 8385-8392.	2.5	133
349	Structure of the Nucleotide-Diphospho-Sugar Transferase, SpsA from Bacillus subtilis, in Native and Nucleotide-Complexed Forms,. Biochemistry, 1999, 38, 6380-6385.	2.5	329
350	Lateral Protonation of a Glycosidase Inhibitor. Structure of theBacillusagaradhaerensCel5A in Complex with a Cellobiose-Derived Imidazole at 0.97 Ã Resolution. Journal of the American Chemical Society, 1999, 121, 2621-2622.	13.7	55
351	The structure of the exo- \hat{l}^2 -(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 294, 771-783.	4.2	98
352	Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92ÂÁ resolution. Biochemical Journal, 1999, 337, 297.	3.7	31
353	Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92ÂÂ resolution. Biochemical Journal, 1999, 337, 297-304.	3.7	74
354	Crystal structure of the catalytic core domain of the family 6 cellobiohydrolase II, Cel6A, from Humicola insolens, at 1.92 A resolution. Biochemical Journal, 1999, 337 (Pt 2), 297-304.	3.7	20
355	Crystal structure of the type-2 Cu depleted laccase from Coprinus dnereus at 2.2 Ã resolution. Nature Structural Biology, 1998, 5, 310-316.	9.7	325
356	Validation tools: can they indicate the information content of macromolecular crystal structures?. Structure, 1998, 6, 685-690.	3.3	22
357	Snapshots along an Enzymatic Reaction Coordinate: Analysis of a Retaining β-Glycoside Hydrolaseâ€,‡. Biochemistry, 1998, 37, 11707-11713.	2.5	255
358	Structure of the Bacillus agaradherans Family 5 Endoglucanase at 1.6 \tilde{A} and Its Cellobiose Complex at 2.0 \tilde{A} Resolution,. Biochemistry, 1998, 37, 1926-1932.	2.5	93
359	A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 1998, 329, 719-719.	3.7	61
360	Crystal structure of the family 7 endoglucanase I (Cel7B) from Humicola insolens at 2.2ÂÃ resolution and identification of the catalytic nucleophile by trapping of the covalent glycosyl-enzyme intermediate. Biochemical Journal, 1998, 335, 409-416.	3.7	77

#	Article	IF	Citations
361	Structural studies on cellulases. Biochemical Society Transactions, 1998, 26, 167-172.	3.4	41
362	Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochemical Journal, 1997, 321, 557-559.	3.7	934
363	A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochemical Journal, 1997, 326, 929-939.	3.7	722
364	Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochemical Journal, 1997, 328, 945-949.	3.7	97
365	The Streptomyces lividans Family 12 Endoglucanase:  Construction of the Catalytic Core, Expression, and X-ray Structure at 1.75 à Resolution,. Biochemistry, 1997, 36, 16032-16039.	2.5	60
366	Structure of theAspergillus oryzael±-Amylase Complexed with the Inhibitor Acarbose at 2.0 Å Resolutionâ€,‡. Biochemistry, 1997, 36, 10837-10845.	2.5	216
367	Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. Journal of Biotechnology, 1997, 57, 91-100.	3.8	30
368	Structure of the Endoglucanase I fromFusariumoxysporum: Native, Cellobiose, and 3,4-Epoxybutyl β-d-Cellobioside-Inhibited Forms, at 2.3 à Resolutionâ€,‡. Biochemistry, 1997, 36, 5902-5911.	2.5	90
369	Identification of the Catalytic Nucleophile of Endoglucanase I fromFusarium oxysporumby Mass Spectrometryâ€. Biochemistry, 1997, 36, 5893-5901.	2.5	41
370	The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 \tilde{A} resolution, and a comparison with related enzymes 1 1Edited by K.Nagai. Journal of Molecular Biology, 1997, 272, 383-397.	4.2	238
371	Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology, 1997, 7, 637-644.	5.7	1,494
372	Crystallization and preliminary X-ray analysis of the laccase fromCoprinus cinereus. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 605-607.	2.5	15
373	Enzymatic Ketonization of 2-Hydroxymuconate: Specificity and Mechanism Investigated by the Crystal Structures of Two Isomerasesâ€. Biochemistry, 1996, 35, 792-802.	2.5	148
374	Structure of the Fusarium oxysporum Endoglucanase I with a Nonhydrolyzable Substrate Analogue: Â Substrate Distortion Gives Rise to the Preferred Axial Orientation for the Leaving Groupâ \in ,â \in _i . Biochemistry, 1996, 35, 15280-15287.	2.5	248
375	Structure and FTIR spectra of 3:2 complexes of trimethylamine N-oxide and 4-dimethylamine-2,6-dimethylpyridine N-oxide with perchloric acid. Computational and Theoretical Chemistry, 1996, 375, 197-206.	1.5	0
376	Structure and FTIR spectra of 3: 2 complexes of trimethylamine N-oxide and 4-dimethylamine-2,6-dimethylpyridine N-oxide with perchloric acid. Journal of Molecular Structure, 1996, 375, 197-206.	3.6	5
377	Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 Ã Resolution. Acta Crystallographica Section D: Biological Crystallography, 1996, 52, 7-17.	2.5	25
378	The X-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 Ã resolution. Nature Structural Biology, 1996, 3, 470-479.	9.7	106

#	Article	IF	Citations
379	Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7090-7094.	7.1	568
380	Structural studies on fungal endoglucanases from Humicola insolens. Progress in Biotechnology, 1995, , 225-237.	0.2	1
381	Structures and mechanisms of glycosyl hydrolases. Structure, 1995, 3, 853-859.	3.3	1,803
382	Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure, 1995, 3, 939-949.	3.3	159
383	Structures of Oligosaccharide-Bound Forms of the Endoglucanase V from Humicola insolens at 1.9 .ANG. Resolution. Biochemistry, 1995, 34, 16210-16220.	2.5	154
384	DNA-Nogalamycin Interactions: The Crystal Structure of d(TGATCA) Complexed with Nogalamycin. Biochemistry, 1995, 34, 415-425.	2.5	63
385	Interactions among residues CD3, E7, E10, and E11 in myoglobins: Attempts to simulate the ligand-binding properties of Aplysia myoglobin. Biochemistry, 1995, 34, 8715-8725.	2.5	40
386	Purification, crystallisation and preliminary X-ray analysis of the vanadium-dependent haloperoxidase from Corallina officinalis. FEBS Letters, 1995, 359, 244-246.	2.8	33
387	Structure of the ADP complex of the 3-phosphoglycerate kinase from Bacillus stearothermophilus at 1.65 Å Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 202-209.	2.5	55
388	Crystallization of a DNA and N-acetylserine Binding Fragment (Residues 1 to 233) of Klebsiella aerogenes CysB Protein, a Member of the LysR Family. Journal of Molecular Biology, 1994, 235, 1159-1161.	4.2	6
389	Crystallization and Preliminary X-ray Analysis of Candida albicans Phosphomannose Isomerase. Journal of Molecular Biology, 1994, 237, 349-350.	4.2	9
390	The structure of a thermally stable 3-phosphoglycerate kinase and a comparison with its mesophilic equivalent. Proteins: Structure, Function and Bioinformatics, 1993, 15, 283-289.	2.6	73
391	Crystallization and preliminary X-ray analysis of nonglycosylated tissue inhibitor of metalloproteinases-1, N30QN78Q TIMP-1. Proteins: Structure, Function and Bioinformatics, 1993, 17, 435-437.	2.6	10
392	Structure and function of endoglucanase V. Nature, 1993, 365, 362-364.	27.8	151
393	Crystallization and Preliminary X-ray Analysis of a Truncated Tissue Metalloproteinase Inhibitor Δ128-194 TIMP-2. Journal of Molecular Biology, 1993, 229, 1163-1164.	4.2	6
394	Crystallization and preliminary X-ray analysis of the complex between a mouse Fab fragment and a single IgG-binding domain from streptococcal protein G. Journal of Molecular Biology, 1992, 227, 1253-1254.	4.2	5
395	Purification, crystallization and preliminary X-ray analysis of the 3-phosphoglycerate kinase from Bacillus stearothermophilus. Journal of Molecular Biology, 1992, 227, 1263-1264.	4.2	6
396	Crystallization and preliminary X-ray analysis of a fungal endoglucanase I. Journal of Molecular Biology, 1992, 228, 970-972.	4.2	13

#	Article	IF	CITATIONS
397	Activity and specificity of human aldolases. Journal of Molecular Biology, 1991, 219, 573-576.	4.2	111
398	Sequence and expression of the gene encoding 3-phosphoglycerate kinase from Bacillus stearothermophilus. Gene, 1991, 109, 39-45.	2.2	27
399	Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature, 1991, 351, 624-629.	27.8	551
400	The crystal structure of human muscle aldolase at 3.0 Ã resolution. FEBS Letters, 1990, 262, 282-286.	2.8	60
401	Phosphoglycerate kinase from the extreme thermophile Thermus thermophilus Crystallization and preliminary X-ray data. FEBS Letters, 1987, 225, 123-126.	2.8	16
402	Evolution of a New Pathway of Reserve Carbohydrate Biosynthesis in <i>Leishmania</i> Parasites. SSRN Electronic Journal, 0, , .	0.4	0