Deepak Nihalani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909899/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells, 2021, 10, 1322.	4.1	8
2	Targeting myosin 1c inhibits murine hepatic fibrogenesis. American Journal of Physiology - Renal Physiology, 2021, 320, G1044-G1053.	3.4	5
3	Phosphorylation of slit diaphragm proteins NEPHRIN and NEPH1 upon binding of HGF promotes podocyte repair. Journal of Biological Chemistry, 2021, 297, 101079.	3.4	4
4	The Use of High-Throughput Transcriptomics to Identify Pathways with Therapeutic Significance in Podocytes. International Journal of Molecular Sciences, 2020, 21, 274.	4.1	7
5	A Functional Binding Domain in the Rbpr2 Receptor Is Required for Vitamin A Transport, Ocular Retinoid Homeostasis, and Photoreceptor Cell Survival in Zebrafish. Cells, 2020, 9, 1099.	4.1	9
6	Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes, 2020, 11, 178.	2.4	6
7	Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney International, 2019, 96, 883-889.	5.2	23
8	Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney International, 2019, 95, 708-716.	5.2	10
9	Disruption of the exocyst induces podocyte loss and dysfunction. Journal of Biological Chemistry, 2019, 294, 10104-10119.	3.4	17
10	Mitochondrial biogenesis induced by the β2-adrenergic receptor agonist formoterol accelerates podocyte recovery from glomerular injury. Kidney International, 2019, 96, 656-673.	5.2	44
11	miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Scientific Reports, 2019, 9, 4692.	3.3	63
12	Beta2â€adrenergic receptor in kidney biology: A current prospective. Nephrology, 2019, 24, 497-503.	1.6	18
13	The motor protein Myo1c regulates transforming growth factor-β–signaling and fibrosis in podocytes. Kidney International, 2019, 96, 139-158.	5.2	20
14	High-content screening assay-based discovery of paullones as novel podocyte-protective agents. American Journal of Physiology - Renal Physiology, 2018, 314, F280-F292.	2.7	12
15	A Novel CLCN5 Mutation Associated WithÂFocal Segmental Glomerulosclerosis andÂPodocyte Injury. Kidney International Reports, 2018, 3, 1443-1453.	0.8	22
16	Deficiency of the Angiotensinase Aminopeptidase A Increases Susceptibility to Glomerular Injury. Journal of the American Society of Nephrology: JASN, 2017, 28, 2119-2132.	6.1	12
17	Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Scientific Reports, 2017, 7, 12047.	3.3	19
18	The exocyst is required for photoreceptor ciliogenesis and retinal development. Journal of Biological Chemistry, 2017, 292, 14814-14826.	3.4	40

Deepak Nihalani

#	Article	IF	CITATIONS
19	Myosin-1 inhibition by PCIP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos. PLoS ONE, 2017, 12, e0180301.	2.5	18
20	Structural Analysis of the Myo1c and Neph1 Complex Provides Insight into the Intracellular Movement of Neph1. Molecular and Cellular Biology, 2016, 36, 1639-1654.	2.3	34
21	Adriamycin susceptibility among C57BL/6 substrains. Kidney International, 2016, 89, 721-723.	5.2	14
22	A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney International, 2015, 87, 564-574.	5.2	111
23	Slit Diaphragm Protein Neph1 and Its Signaling. Journal of Biological Chemistry, 2014, 289, 9502-9518.	3.4	39
24	Myo1c is an unconventional myosin required for zebrafish glomerular development. Kidney International, 2013, 84, 1154-1165.	5.2	14
25	Sirt1–Claudin-1 crosstalk regulates renal function. Nature Medicine, 2013, 19, 1371-1372.	30.7	26
26	Solution Structure Analysis of Cytoplasmic Domain of Podocyte Protein Neph1 Using Small/Wide Angle X-ray Scattering (SWAXS). Journal of Biological Chemistry, 2012, 287, 9441-9453.	3.4	13
27	Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. Journal of Clinical Investigation, 2012, 122, 674-692.	8.2	92
28	Ischemic Injury to Kidney Induces Glomerular Podocyte Effacement and Dissociation of Slit Diaphragm Proteins Neph1 and ZO-1. Journal of Biological Chemistry, 2008, 283, 35579-35589.	3.4	80
29	Neph1 Cooperates with Nephrin To Transduce a Signal That Induces Actin Polymerization. Molecular and Cellular Biology, 2007, 27, 8698-8712.	2.3	130
30	Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. Journal of Clinical Investigation, 2006, 116, 1346-1359.	8.2	282
31	An efficient and scalable synthesis of Isodesmosine. Journal of Heterocyclic Chemistry, 0, , .	2.6	0