
Michael Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5909306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluoride contamination of groundwater resources in Ghana: Country-wide hazard modeling and estimated population at risk. Water Research, 2022, 212, 118083.	11.3	22
2	Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh – Machine learning spatial prediction modeling and comparison with arsenic. Science of the Total Environment, 2022, 833, 155131.	8.0	28
3	Noble gas constraints on the fate of arsenic in groundwater. Water Research, 2022, 214, 118199.	11.3	4
4	Monitoring and prediction of high fluoride concentrations in groundwater in Pakistan. Science of the Total Environment, 2022, 839, 156058.	8.0	23
5	Global arsenic dilemma and sustainability. Journal of Hazardous Materials, 2022, 436, 129197.	12.4	28
6	Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environmental Geochemistry and Health, 2021, 43, 2649-2664.	3.4	26
7	Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling. Journal of Hazardous Materials, 2021, 407, 124398.	12.4	31
8	Iron mineral transformations and their impact on As (im)mobilization at redox interfaces in As-contaminated aquifers. Geochimica Et Cosmochimica Acta, 2021, 296, 189-209.	3.9	24
9	Quantification of individual Rare Earth Elements from industrial sources in sewage sludge. Water Research X, 2021, 11, 100092.	6.1	23
10	Phosphate immobilisation dynamics and interaction with arsenic sorption at redox transition zones in floodplain aquifers: Insights from the Red River Delta, Vietnam. Journal of Hazardous Materials, 2021, 411, 125128.	12.4	21
11	Carbon and methane cycling in arsenic-contaminated aquifers. Water Research, 2021, 200, 117300.	11.3	22
12	Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. Science of the Total Environment, 2021, 779, 146501.	8.0	16
13	Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 2020, 1, .	6.8	22
14	Global threat of arsenic in groundwater. Science, 2020, 368, 845-850.	12.6	712
15	Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of Fe ^{III} -Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam). Environmental Science & Technology, 2020, 54, 4149-4159.	10.0	58
16	The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 2020, 13, 288-295.	12.9	104
17	A global-scale dataset of direct natural groundwater recharge rates: A review of variables, processes and relationships. Science of the Total Environment, 2020, 717, 137042.	8.0	95
18	Spatial and temporal evolution of groundwater arsenic contamination in the Red River delta, Vietnam: Interplay of mobilisation and retardation processes. Science of the Total Environment, 2020, 717, 137143.	8.0	61

#	Article	IF	CITATIONS
19	Mercury loads and fluxes from wastewater: A nationwide survey in Switzerland. Water Research, 2020, 175, 115708.	11.3	20
20	Advect As challenge: multidisciplinary research on groundwater arsenic dissolution, transport, and retardation under advective flow conditions. , 2019, , 29-31.		0
21	Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Environmental Science and Pollution Research, 2018, 25, 15954-15961.	5.3	16
22	Insights into arsenic retention dynamics of Pleistocene aquifer sediments by in situ sorption experiments. Water Research, 2018, 129, 123-132.	11.3	18
23	Biogeochemical phosphorus cycling in groundwater ecosystems – Insights from South and Southeast Asian floodplain and delta aquifers. Science of the Total Environment, 2018, 644, 1357-1370.	8.0	31
24	Prediction Modeling and Mapping of Groundwater Fluoride Contamination throughout India. Environmental Science & Technology, 2018, 52, 9889-9898.	10.0	148
25	Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam. Applied Geochemistry, 2017, 77, 184-193.	3.0	42
26	Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Scientific Reports, 2017, 7, 40173.	3.3	31
27	Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Science of the Total Environment, 2017, 584-585, 958-970.	8.0	86
28	Processes governing arsenic retardation on <scp>P</scp> leistocene sediments: Adsorption experiments and modelâ€based analysis. Water Resources Research, 2017, 53, 4344-4360.	4.2	42
29	Estimating the spatial distribution of artificial groundwater recharge using multiple tracers. Isotopes in Environmental and Health Studies, 2017, 53, 484-499.	1.0	17
30	Arsenic Removal from Drinking Water: Experiences with Technologies and Constraints in Practice. Journal of Environmental Engineering, ASCE, 2017, 143, .	1.4	74
31	Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Science Advances, 2017, 3, e1700935.	10.3	178
32	Arsenic, manganese and aluminum contamination in groundwater resources of Western Amazonia (Peru). Science of the Total Environment, 2017, 607-608, 1437-1450.	8.0	67
33	Characterization of a managed aquifer recharge system using multiple tracers. Science of the Total Environment, 2017, 609, 701-714.	8.0	53
34	Multiscale Characterization and Quantification of Arsenic Mobilization and Attenuation During Injection of Treated Coal Seam Gas Coproduced Water into Deep Aquifers. Water Resources Research, 2017, 53, 10779-10801.	4.2	22
35	Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer. Environmental Science & Technology, 2017, 51, 8471-8480.	10.0	29
36	Quantification of Element Fluxes in Wastewaters: A Nationwide Survey in Switzerland. Environmental Science & Technology, 2017, 51, 10943-10953.	10.0	62

#	Article	IF	CITATIONS
37	Regional to sub-continental prediction modeling of groundwater arsenic contamination. Arsenic in the Environment Proceedings, 2016, , 21-22.	0.0	3
38	An integrated spatial snap-shot monitoring method for identifying seasonal changes and spatial changes in surface water quality. Journal of Hydrology, 2016, 539, 567-576.	5.4	13
39	Multicomponent statistical analysis to identify flow and transport processes in a highly-complex environment. Journal of Hydrology, 2016, 542, 437-449.	5.4	30
40	Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations. Environmental Science & Technology, 2016, 50, 2459-2467.	10.0	62
41	Elimination of polar micropollutants and anthropogenic markers by wastewater treatment in Beijing, China. Chemosphere, 2015, 119, 1054-1061.	8.2	79
42	Quantification of volatile-alkylated selenium and sulfur in complex aqueous media using solid-phase microextraction. Journal of Chromatography A, 2015, 1407, 11-20.	3.7	21
43	Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Applied Geochemistry, 2015, 61, 248-258.	3.0	66
44	Arsenic removal from drinking water by a household sand filter in Vietnam — Effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Science of the Total Environment, 2015, 502, 526-536.	8.0	50
45	Organic micropollutants in the Yangtze River: Seasonal occurrence and annual loads. Science of the Total Environment, 2014, 472, 789-799.	8.0	102
46	Human exposure to arsenic from drinking water in Vietnam. Science of the Total Environment, 2014, 488-489, 562-569.	8.0	61
47	Natural wetland emissions of methylated trace elements. Nature Communications, 2014, 5, 3035.	12.8	69
48	Solid-phase characterisation of an effective household sand filter for As, Fe and Mn removal from groundwater in Vietnam. Environmental Chemistry, 2014, 11, 566.	1.5	25
49	Terrestrial selenium distribution in China is potentially linked to monsoonal climate. Nature Communications, 2014, 5, 4717.	12.8	87
50	Towards sustainable safe drinking water supply in low- and middle-income countries: The challenges of geogenic contaminants and mitigation measures. Science of the Total Environment, 2014, 488-489, 475-476.	8.0	1
51	Quantification of Methylated Selenium, Sulfur, and Arsenic in the Environment. PLoS ONE, 2014, 9, e102906.	2.5	28
52	Groundwater Arsenic Contamination Throughout China. Science, 2013, 341, 866-868.	12.6	731
53	Retardation of arsenic transport through a Pleistocene aquifer. Nature, 2013, 501, 204-207.	27.8	136
54	Characterisation of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic-poor Pleistocene aquifers. Red River Delta, Vietnam, Applied Geochemistry, 2012, 27, 315-325	3.0	57

#	Article	IF	CITATIONS
55	Sources and Pathways of Nutrients in the Semi-Arid Region of Beijing–Tianjin, China. Environmental Science & Technology, 2012, 46, 5294-5301.	10.0	103
56	Organic Micropollutants in Rivers Downstream of the Megacity Beijing: Sources and Mass Fluxes in a Large-Scale Wastewater Irrigation System. Environmental Science & Technology, 2012, 46, 8680-8688.	10.0	138
57	The geochemistry of the Yangtze River: Seasonality of concentrations and temporal trends of chemical loads. Global Biogeochemical Cycles, 2012, 26, .	4.9	42
58	Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1246-1251.	7.1	247
59	Sustainable Use of Arsenic-Removing Sand Filters in Vietnam: Psychological and Social Factors. Environmental Science & Technology, 2011, 45, 3260-3267.	10.0	25
60	Water and Sanitation in Developing Countries: Geochemical Aspects of Quality and Treatment. Elements, 2011, 7, 163-168.	0.5	20
61	Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and) Tj ETQq1 1	0.784314 3.0	rgBT /Overlo
62	Assessing the transformation of chlorinated ethenes in aquifers with limited potential for natural attenuation: Added values of compound-specific carbon isotope analysis and groundwater dating. Chemosphere, 2011, 85, 774-781.	8.2	16
63	Polycyclic aromatic hydrocarbons in effluents from wastewater treatment plants and receiving streams in Tianjin, China. Environmental Monitoring and Assessment, 2011, 177, 467-480.	2.7	22
64	Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC - Trends in Analytical Chemistry, 2011, 30, 618-627.	11.4	121
65	Recent levels of organochlorine pesticides and polychlorinated biphenyls in sediments of the sewer system in Hanoi, Vietnam. Environmental Pollution, 2010, 158, 913-920.	7.5	92
66	Quantifying In Situ Transformation Rates of Chlorinated Ethenes by Combining Compound-Specific Stable Isotope Analysis, Groundwater Dating, And Carbon Isotope Mass Balances. Environmental Science & Technology, 2010, 44, 3705-3711.	10.0	68
67	¹³ C/ ¹² C Analysis of Ultra-Trace Amounts of Volatile Organic Contaminants in Groundwater by Vacuum Extraction. Environmental Science & Technology, 2010, 44, 1023-1029.	10.0	17
68	Geochemical changes in individual sediment grains during sequential arsenic extractions. Water Research, 2010, 44, 5545-5555.	11.3	26
69	The influence of colloids on the geochemical behavior of metals in polluted water using as an example Yongdingxin River, Tianjin, China. Chemosphere, 2010, 78, 360-367.	8.2	33
70	Influence of Mass-Transfer Limitations on Carbon Isotope Fractionation during Microbial Dechlorination of Trichloroethene. Environmental Science & Technology, 2009, 43, 8813-8820.	10.0	63
71	Assessing TNT and DNT groundwater contamination by compound-specific isotope analysis and 3H–3He groundwater dating: A case study in Portugal. Chemosphere, 2009, 77, 805-812.	8.2	38
72	Impact of sulfate reduction on the scale of arsenic contamination in groundwater of the Mekong, Bengal and Red River deltas. Applied Geochemistry, 2009, 24, 1278-1286.	3.0	110

#	Article	IF	CITATIONS
73	Simultaneous quantification of polar and non-polar volatile organic compounds in water samples by direct aqueous injection-gas chromatography/mass spectrometry. Journal of Chromatography A, 2008, 1181, 116-124.	3.7	49
74	Predicting groundwater arsenic contamination in Southeast Asia fromÂsurface parameters. Nature Geoscience, 2008, 1, 536-542.	12.9	234
75	How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Science of the Total Environment, 2008, 402, 232-247.	8.0	269
76	Statistical Modeling of Global Geogenic Arsenic Contamination in Groundwater. Environmental Science & Technology, 2008, 42, 3669-3675.	10.0	317
77	Arsenic mobilisation in a new well field for drinking water production along the Red River, Nam Du, Hanoi. Applied Geochemistry, 2008, 23, 3127-3142.	3.0	40
78	Hydrogeological survey assessing arsenic and other groundwater contaminants in the lowlands of Sumatra, Indonesia. Applied Geochemistry, 2008, 23, 3019-3028.	3.0	49
79	Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River delta, Vietnam. Applied Geochemistry, 2008, 23, 3143-3154.	3.0	107
80	Arsenic in Groundwaters of South-East Asia: With Emphasis on Cambodia and Vietnam. Applied Geochemistry, 2008, 23, 2968-2976.	3.0	38
81	Modelling arsenic hazard in Cambodia: A geostatistical approach using ancillary data. Applied Geochemistry, 2008, 23, 3010-3018.	3.0	53
82	Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Applied Geochemistry, 2008, 23, 3244-3251.	3.0	62
83	Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 2008, 34, 756-764.	10.0	252
84	Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 2008, 249, 91-112.	3.3	227
85	Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere, 2008, 72, 968-973.	8.2	234
86	Carbon, Hydrogen, and Nitrogen Isotope Fractionation During Light-Induced Transformations of Atrazine. Environmental Science & Technology, 2008, 42, 7751-7756.	10.0	78
87	Bangladesh and Vietnam: Different Groundwater Compositions Require Different Approaches to Arsenic Mitigation. Environmental Science & amp; Technology, 2008, 42, 6318-6323.	10.0	98
88	Carbon and Chlorine Isotope Effects During Abiotic Reductive Dechlorination of Polychlorinated Ethanes. Environmental Science & amp; Technology, 2007, 41, 4662-4668.	10.0	63
89	Response to Comment on "Arsenic Removal from Groundwater by Household Sand Filters:Â Comparative Field Study, Model Calculations, and Health Benefits― Environmental Science & Technology, 2007, 41, 1053-1053.	10.0	1
90	Compound-Specific Nitrogen and Carbon Isotope Analysis of Nitroaromatic Compounds in Aqueous Samples Using Solid-Phase Microextraction Coupled to GC/IRMS. Analytical Chemistry, 2007, 79, 2386-2393.	6.5	133

#	Article	IF	CITATIONS
91	Arsenic and Manganese Contamination of Drinking Water Resources in Cambodia:Â Coincidence of Risk Areas with Low Relief Topography. Environmental Science & Technology, 2007, 41, 2146-2152.	10.0	227
92	Magnitude of arsenic pollution in the Mekong and Red River Deltas — Cambodia and Vietnam. Science of the Total Environment, 2007, 372, 413-425.	8.0	443
93	Arsenite and Arsenate Binding to Dissolved Humic Acids:Â Influence of pH, Type of Humic Acid, and Aluminum. Environmental Science & Technology, 2006, 40, 6015-6020.	10.0	316
94	Arsenic Removal from Groundwater by Household Sand Filters:Â Comparative Field Study, Model Calculations, and Health Benefits. Environmental Science & Technology, 2006, 40, 5567-5573.	10.0	178
95	Kinetics and Mechanistic Aspects of As(III) Oxidation by Aqueous Chlorine, Chloramines, and Ozone:Â Relevance to Drinking Water Treatment. Environmental Science & Technology, 2006, 40, 3285-3292.	10.0	155
96	Using Nitrogen Isotope Fractionation To Assess Abiotic Reduction of Nitroaromatic Compounds. Environmental Science & Technology, 2006, 40, 7710-7716.	10.0	67
97	Using Bacteria to Quantify Arsenic Contamination in Potable Water. Chimia, 2006, 60, 631-631.	0.6	0
98	Comment on "New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes: Application to Groundwater Contamination by MTBE― Environmental Science & Technology, 2005, 39, 8541-8542.	10.0	6
99	Bacterial Bioassay for Rapid and Accurate Analysis of Arsenic in Highly Variable Groundwater Samples. Environmental Science & Technology, 2005, 39, 7625-7630.	10.0	149
100	Response to Comment on "New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes: Application to Groundwater Contamination by MTBE― Environmental Science & Technology, 2005, 39, 8543-8544.	10.0	5
101	New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes:Â Application to Groundwater Contamination by MTBE. Environmental Science & Technology, 2005, 39, 1018-1029.	10.0	184
102	New Evaluation Scheme for Two-Dimensional Isotope Analysis to Decipher Biodegradation Processes:Â Application to Groundwater Contamination by MTBE. Environmental Science & Technology, 2005, 39, 7344-7344.	10.0	18
103	Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Analytical and Bioanalytical Chemistry, 2004, 378, 283-300.	3.7	319
104	Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per Liter Range. Analytical Chemistry, 2003, 75, 5575-5583.	6.5	123
105	Trihalomethane formation by chlorination of ammonium- and bromide-containing groundwater in water supplies of Hanoi, Vietnam. Water Research, 2003, 37, 3242-3252.	11.3	74
106	Environmental Analytical Research in Northern Vietnam – A Swiss-Vietnamese Cooperation Focusing on Arsenic and Organic Contaminants in Aquatic Environments and Drinking Water. Chimia, 2003, 57, 529-536.	0.6	16
107	Investigation of arsenic release from sediment minerals to water phases. , 2003, , 93-101.		0

108 Investigation of arsenic removal technologies for drinking water in Vietnam. , 2003, , 459-469.

6

#	Article	IF	CITATIONS
109	Simultaneous Determination of Fuel Oxygenates and BTEX Using Direct Aqueous Injection Gas Chromatography Mass Spectrometry (DAI-GC/MS). Environmental Science & Technology, 2002, 36, 2054-2059.	10.0	80
110	Determination of liposome/water partition coefficients of organic acids and bases by solid-phase microextraction. Analyst, The, 2002, 127, 42-48.	3.5	39
111	Sorption and Desorption Behavior of Organotin Compounds in Sedimentâ^'Pore Water Systems. Environmental Science & Technology, 2001, 35, 3151-3157.	10.0	88
112	Arsenic Contamination of Groundwater and Drinking Water in Vietnam:Â A Human Health Threat. Environmental Science & Technology, 2001, 35, 2621-2626.	10.0	930
113	Analysis of fuel oxygenates in the environment. Analyst, The, 2001, 126, 405-413.	3.5	45
114	Concentrations and Mass Fluxes of Chloroacetic Acids and Trifluoroacetic Acid in Rain and Natural Waters in Switzerland. Environmental Science & Technology, 2000, 34, 2675-2683.	10.0	150
115	Phenyl- and Butyltin Analysis in Small Biological Samples by Cold Methanolic Digestion and GC/MS. Analytical Chemistry, 2000, 72, 5136-5141.	6.5	40
116	Uptake and Elimination of Triorganotin Compounds by Larval MidgeChironomus ripariusin the Absence and Presence of Aldrich Humic Acid. Environmental Science & Technology, 2000, 34, 5165-5171.	10.0	34
117	Determination of Organotin Compounds in Water, Sediments, and Sewage Sludge Using Perdeuterated Internal Standards, Accelerated Solvent Extraction, and Large-Volume-Injection GC/MS. Analytical Chemistry, 1998, 70, 3094-3101.	6.5	101
118	Atrazine and Its Primary Metabolites in Swiss Lakes:Â Input Characteristics and Long-Term Behavior in the Water Column. Environmental Science & Technology, 1997, 31, 2104-2113.	10.0	78
119	Simultaneous Determination of Triazines Including Atrazine and Their Major Metabolites Hydroxyatrazine, Desethylatrazine, and Deisopropylatrazine in Natural Waters. Analytical Chemistry, 1995, 67, 1860-1865.	6.5	89