Aldo Romani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5907215/publications.pdf

Version: 2024-02-01

259 papers 9,590 citations

47006 47 h-index 90 g-index

266 all docs

266 docs citations

266 times ranked 7356 citing authors

#	Article	IF	Citations
1	Development of a multi-method analytical approach based on the combination of synchrotron radiation X-ray micro-analytical techniques and vibrational micro-spectroscopy methods to unveil the causes and mechanism of darkening of "fake-gilded―decorations in a Cimabue painting. Journal of Analytical Atomic Spectrometry, 2022, 37, 114-129.	3.0	10
2	JUNO physics and detector. Progress in Particle and Nuclear Physics, 2022, 123, 103927.	14.4	86
3	Correlated and integrated directionality for sub-MeV solar neutrinos in Borexino. Physical Review D, 2022, 105, .	4.7	8
4	The "Historical Materials BAG― A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules, 2022, 27, 1997.	3.8	17
5	Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1â°'xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales. European Physical Journal Plus, 2022, 137, 1.	2.6	5
6	First Directional Measurement of Sub-MeV Solar Neutrinos with Borexino. Physical Review Letters, 2022, 128, 091803.	7.8	17
7	A study of events with photoelectric emission in the DarkSide-50 liquid argon Time Projection Chamber. Astroparticle Physics, 2022, 140, 102704.	4.3	3
8	Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 988, 164823.	1.6	34
9	Hydrogels: A â€~stepping stone' towards new cleaning strategies for biodeteriorated surfaces. Journal of Cultural Heritage, 2021, 47, 1-11.	3.3	14
10	Search for low-energy neutrinos from astrophysical sources with Borexino. Astroparticle Physics, 2021, 125, 102509.	4.3	26
11	Embedded readout electronics R&D for the large PMTs in the JUNO experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 985, 164600.	1.6	21
12	The dependence of the spectroscopic properties of orcein dyes on solvent proticity: insights from theory and experiments. Physical Chemistry Chemical Physics, 2021, 23, 15329-15337.	2.8	0
13	SiPM-matrix readout of two-phase argon detectors using electroluminescence in the visible and near infrared range. European Physical Journal C, 2021, 81, 1.	3.9	18
14	Calibration strategy of the JUNO experiment. Journal of High Energy Physics, 2021, 2021, 1.	4.7	39
15	Organic colorants based on lac dye and brazilwood as markers for a chronology and geography of medieval scriptoria: a chemometrics approach. Heritage Science, 2021, 9, .	2.3	11
16	Unveiling the composition of historical plastics through non-invasive reflection FT-IR spectroscopy in the extended near- and mid-Infrared spectral range. Analytica Chimica Acta, 2021, 1169, 338602.	5 . 4	3
17	Identifying Brazilwood's Marker Component, Urolithin C, in Historical Textiles by Surface-Enhanced Raman Spectroscopy. Heritage, 2021, 4, 1415-1428.	1.9	10
18	FPGA Implementation of an NCO Based CDR for the JUNO Front-End Electronics. IEEE Transactions on Nuclear Science, 2021, 68, 1952-1960.	2.0	0

#	Article	IF	Citations
19	Feasibility and physics potential of detecting ⁸ B solar neutrinos at JUNO *. Chinese Physics C, 2021, 45, 023004.	3.7	26
20	JUNO sensitivity to low energy atmospheric neutrino spectra. European Physical Journal C, 2021, 81, 1.	3.9	11
21	Calibration of the liquid argon ionization response to low energy electronic and nuclear recoils with DarkSide-50. Physical Review D, 2021, 104 , .	4.7	8
22	The design and sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS. European Physical Journal C, 2021, 81, 1.	3.9	15
23	Radioactivity control strategy for the JUNO detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	13
24	Solar and geoneutrinos. Journal of Physics: Conference Series, 2021, 2156, 012002.	0.4	0
25	Identification of the cosmogenic $\11 \$C background in large volumes of liquid scintillators with Borexino. European Physical Journal C, 2021, 81, 1.	3.9	6
26	First Cherenkov directional detection of sub-MeV solar neutrinos in Borexino. Journal of Physics: Conference Series, 2021, 2156, 012111.	0.4	0
27	Observation of CNO cycle solar neutrinos in Borexino. Journal of Physics: Conference Series, 2021, 2156, 012128.	0.4	0
28	Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature, 2020, 587, 577-582.	27.8	137
29	Sensitivity to neutrinos from the solar CNO cycle in Borexino. European Physical Journal C, 2020, 80, 1.	3.9	19
30	Damages Induced by Synchrotron Radiation-Based X-ray Microanalysis in Chrome Yellow Paints and Related Cr-Compounds: Assessment, Quantification, and Mitigation Strategies. Analytical Chemistry, 2020, 92, 14164-14173.	6.5	22
31	In-Depth Analysis of Egg-Tempera Paint Layers by Multiphoton Excitation Fluorescence Microscopy. Sustainability, 2020, 12, 3831.	3.2	9
32	Probing the chemistry of CdS paints in <i>The Scream</i> by in situ noninvasive spectroscopies and synchrotron radiation x-ray techniques. Science Advances, 2020, 6, eaay3514.	10.3	41
33	Facile preparation of organic-inorganic hydrogels containing silver or essential oil with antimicrobial effects. Applied Clay Science, 2020, 190, 105567.	5.2	19
34	New insights into the fading mechanism of Geranium lake in painting matrix― Dyes and Pigments, 2020, 181, 108600.	3.7	14
35	Effective field theory interactions for liquid argon target in DarkSide-50 experiment. Physical Review D, 2020, 101, .	4.7	6
36	Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon. Journal of Instrumentation, 2020, 15, P02024-P02024.	1.2	19

#	ARTICLE In provide measurement of <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
37	display="inline"> <mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi mathvariant="normal">B</mml:mi></mml:mrow><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow>	4.7	24
38	display="inline"> < mmkmrow> < mmkmr> 1.5 < / mmkmr> < mmkmtext> â€% < mmkmtext> < mmkmtext> â€% < / mmkmtext> â€% < / mmkmtext> a€% < / mmtext> a€% <	:mtext> < 2.5	mml:mi>kt< 9
39	The Monte Carlo simulation of the Borexino detector. Journal of Physics: Conference Series, 2020, 1342, 012035.	0.4	O
40	Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Vanâ€Gogh's Painting The Olive Orchard. Angewandte Chemie, 2020, 132, 6102-6109.	2.0	4
41	Molecular Fluorescence Imaging Spectroscopy for Mapping Low Concentrations of Red Lake Pigments: Vanâ€Gogh's Painting The Olive Orchard. Angewandte Chemie - International Edition, 2020, 59, 6046-6053.	13.8	14
42	Comprehensive geoneutrino analysis with Borexino. Physical Review D, 2020, 101, .	4.7	42
43	Constraints on flavor-diagonal non-standard neutrino interactions from Borexino Phase-II. Journal of High Energy Physics, 2020, 2020, 1.	4.7	13
44	Shades of blue: non-invasive spectroscopic investigations of Maya blue pigments. From laboratory mock-ups to Mesoamerican codices. Heritage Science, 2020, 8, .	2.3	25
45	The study of solar neutrinos and of non-standard neutrino interactions with Borexino. Journal of Physics: Conference Series, 2020, 1468, 012192.	0.4	0
46	Solar Neutrino Results and Future Opportunities with Borexino. Journal of Physics: Conference Series, 2019, 1137, 012054.	0.4	1
47	Analysis of chromophores in stained-glass windows using Visible Hyperspectral Imaging in-situ. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 223, 117378. Simultaneous precision spectroscopy of Ammilmath	3.9	24
48	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> p, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Be</mml:mi></mml:mrow><mml:mpre< td=""><td>4.7 scripts</td><td>80</td></mml:mpre<></mml:mmultiscripts></mml:mrow></mml:math 	4.7 scripts	80
49	/> <mml:none></mml:none> <mml:none></mml:none> Multitechnique approach for unveiling the technological evolution in building materials during the Roman Imperial Age: The Atrium Vestae in Rome. European Physical Journal Plus, 2019, 134, 1.	2.6	3
50	Composite sodium alginate-ion exchangers as cleaning systems for the removal of gypsum efflorescences. Applied Clay Science, 2019, 181, 105216.	5. 2	3
51	Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 925, 6-17.	1.6	17
52	GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment. Journal of Geophysical Research: Solid Earth, 2019, 124, 4231-4249.	3.4	16
53	Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation. IEEE Transactions on Nuclear Science, 2019, 66, 1151-1158.	2.0	15
54	Effect of hydrogen bonding interaction on the photophysics of \hat{l}_{\pm} -amino-orcein. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 522-530.	3.9	1

#	Article	IF	CITATIONS
55	Disclosing the Binding Medium Effects and the Pigment Solubility in the (Photo)reduction Process of Chrome Yellows (PbCrO ₄ /PbCr _{1–<i>x</i>} S _{<i>x</i>} O ₄). ACS Omega, 2019, 4, 6607-6619.	3.5	17
56	Modulations of the cosmic muon signal in ten years of Borexino data. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 046-046.	5.4	22
57	Measurement of the ion fraction and mobility of ²¹⁸ Po produced in ²²² Rn decays in liquid argon. Journal of Instrumentation, 2019, 14, P11018-P11018.	1.2	2
58	Interpreting technical evidence from spectral imaging of paintings by Édouard Manet in the Courtauld Gallery. X-Ray Spectrometry, 2019, 48, 282-292.	1.4	10
59	Solar neutrino physics with Borexino. , 2019, , .		О
60	Further Insight into Mesoamerican Paint Technology: Unveiling the Colour Palette of the Preâ€Columbian Codex Fejérváryâ€Mayer by Means of Nonâ€invasive Analysis. Archaeometry, 2018, 60, 797-8	314 ³	11
61	Charge reconstruction in large-area photomultipliers. Journal of Instrumentation, 2018, 13, P02008-P02008.	1.2	3
62	The Monte Carlo simulation of the Borexino detector. Astroparticle Physics, 2018, 97, 136-159.	4.3	30
63	Integrate measurements allow the surface characterization of thermo-vacuum treated alder differentially coated. Measurement: Journal of the International Measurement Confederation, 2018, 114, 372-381.	5.0	5
64	Layered double hydroxide and zirconium phosphate as ion exchangers for the removal of †black crusts' from the surface of ancient monuments. Dalton Transactions, 2018, 47, 2976-2985.	3.3	11
65	Zur Photochemie von Künstlerfarben: Strategien zur Verhinderung von FarbverÃnderungen in Kunstwerken. Angewandte Chemie, 2018, 130, 7447-7457.	2.0	1
66	Solar Neutrinos Spectroscopy with Borexino Phase-II. Universe, 2018, 4, 118.	2.5	2
67	DarkSide-50 532-day dark matter search with low-radioactivity argon. Physical Review D, 2018, 98, .	4.7	147
68	Comprehensive measurement of pp-chain solar neutrinos. Nature, 2018, 562, 505-510.	27.8	169
69	Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment. Physical Review Letters, 2018, 121, 111303.	7.8	179
70	Frontispiece: Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S) in Oil Paintings. Chemistry - A European Journal, 2018, 24, .	3.3	0
71	Photochemistry of Artists' Dyes and Pigments: Towards Better Understanding and Prevention of Colour Change in Works of Art. Angewandte Chemie - International Edition, 2018, 57, 7324-7334.	13.8	42
72	DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. European Physical Journal Plus, 2018, 133, 1.	2.6	247

#	Article	IF	CITATIONS
73	Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 2018, 121, 081307.	7.8	259
74	Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 904, 23-34.	1.6	13
75	Role of the Relative Humidity and the Cd/Zn Stoichiometry in the Photooxidation Process of Cadmium Yellows (CdS/Cd $<$ sub $>$ 1 \hat{a} ° $<$ i> $><$ i> $><$ i > $><$ 1 $><$ 1sub $><$ i> $><$ i > $><$ 1sub $>>$ 0) in Oil Paintings. Chemistry - A European Journal, 2018, 24, 11584-11593.	3.3	27
76	Recent Borexino results and perspectives of the SOX measurement. EPJ Web of Conferences, 2018, 182, 02099.	0.3	0
77	Seasonal modulation of the 7 Be solar neutrino rate in Borexino. Astroparticle Physics, 2017, 92, 21-29.	4.3	22
78	The DarkSide Experiment: Present Status and Future. Journal of Physics: Conference Series, 2017, 798, 012109.	0.4	7
79	Optical Communication among Oscillatory Reactions and Photoâ€Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models. Angewandte Chemie - International Edition, 2017, 56, 7535-7540.	13.8	43
80	Optical Communication among Oscillatory Reactions and Photoâ€Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models. Angewandte Chemie, 2017, 129, 7643-7648.	2.0	3
81	Effect of low electric fields on alpha scintillation light yield in liquid argon. Journal of Instrumentation, 2017, 12, P01021-P01021.	1.2	5
82	Simulation of argon response and light detection in the DarkSide-50 dual phase TPC. Journal of Instrumentation, 2017, 12, P10015-P10015.	1.2	31
83	Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data. Physical Review D, 2017, 96, .	4.7	94
84	A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector. Astrophysical Journal, 2017, 850, 21.	4.5	26
85	Borexino: Recent results and future plans. Physics of Particles and Nuclei, 2017, 48, 1026-1029.	0.7	1
86	Recent Results from Borexino. Journal of Physics: Conference Series, 2017, 798, 012114.	0.4	0
87	Borexino's search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts. Astroparticle Physics, 2017, 86, 11-17.	4.3	13
88	Molecular and structural characterization of some violet phosphate pigments for their non-invasive identification in modern paintings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 439-444.	3.9	11
89	CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino. Journal of Physics: Conference Series, 2017, 934, 012003.	0.4	1
90	The DarkSide direct dark matter search with liquid argon. AIP Conference Proceedings, 2017, , .	0.4	0

#	Article	IF	Citations
91	The electronics, trigger and data acquisition system for the liquid argon time projection chamber of the DarkSide-50 search for dark matter. Journal of Instrumentation, 2017, 12, P12011-P12011.	1.2	10
92	CALISâ€"A CALibration Insertion System for the DarkSide-50 dark matter search experiment. Journal of Instrumentation, 2017, 12, T12004-T12004.	1.2	10
93	Solar neutrino detectors as sterile neutrino hunters. Journal of Physics: Conference Series, 2017, 888, 012018.	0.4	1
94	Test of the electron stability with the Borexino detector. Journal of Physics: Conference Series, 2017, 888, 012193.	0.4	1
95	Cryogenic Characterization of FBK RGB-HD SiPMs. Journal of Instrumentation, 2017, 12, P09030-P09030.	1.2	16
96	Improvements in the simulation code of the SOX experiment. Journal of Physics: Conference Series, 2017, 888, 012145.	0.4	0
97	Borexino: geo-neutrino measurement at Gran Sasso, Italy. Annals of Geophysics, 2017, 60, .	1.0	2
98	Recent results from Borexino. Journal of Physics: Conference Series, 2016, 718, 062059.	0.4	0
99	Short distance neutrino oscillations with Borexino. EPJ Web of Conferences, 2016, 121, 01002.	0.3	O
100	The DarkSide Program. EPJ Web of Conferences, 2016, 121, 06010.	0.3	0
101	Recent Borexino results and prospects for the near future. EPJ Web of Conferences, 2016, 126, 02008.	0.3	2
102	SOX: search for short baseline neutrino oscillations with Borexino. Journal of Physics: Conference Series, 2016, 718, 062066.	0.4	3
103	Geo-neutrino results with Borexino. Journal of Physics: Conference Series, 2016, 675, 012029.	0.4	3
104	CNO andpepsolar neutrino measurements and perspectives in Borexino. Journal of Physics: Conference Series, 2016, 675, 012040.	0.4	2
105	Overview and accomplishments of the Borexino experiment. Journal of Physics: Conference Series, 2016, 675, 012036.	0.4	1
106	Neutrino physics with JUNO. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 030401.	3.6	750
107	Measurement of neutrino flux from the primary proton–proton fusion process in the Sun with Borexino detector. Physics of Particles and Nuclei, 2016, 47, 995-1002.	0.7	7
108	The DarkSide-50 outer detectors. Journal of Physics: Conference Series, 2016, 718, 042062.	0.4	0

#	Article	IF	Citations
109	The search for sterile neutrinos with SOX-Borexino. Physics of Atomic Nuclei, 2016, 79, 1481-1484.	0.4	2
110	The electronics and data acquisition system for the DarkSide-50 veto detectors. Journal of Instrumentation, 2016, 11, P12007-P12007.	1.2	7
111	The veto system of the DarkSide-50 experiment. Journal of Instrumentation, 2016, 11, P03016-P03016.	1.2	33
112	The DarkSide project. Journal of Instrumentation, 2016, 11, C02051-C02051.	1.2	3
113	A first walk on the DarkSide. Nuclear and Particle Physics Proceedings, 2016, 273-275, 452-458.	0.5	O
114	SOX: Short Distance Neutrino Oscillations with Borexino. Nuclear and Particle Physics Proceedings, 2016, 273-275, 1760-1764.	0.5	2
115	Disclosing Jackson Pollock's palette in Alchemy (1947) by non-invasive spectroscopies. Heritage Science, 2016, 4, .	2.3	32
116	Results from the first use of low radioactivity argon in a dark matter search. Physical Review D, 2016, 93, .	4.7	108
117	Test of the electric charge conservation law with Borexino detector. Journal of Physics: Conference Series, 2016, 675, 012025.	0.4	0
118	Measurement of Solar pp-neutrino flux with Borexino: results and implications. Journal of Physics: Conference Series, 2016, 675, 012027.	0.4	3
119	The high precision measurement of the sup > 144 < sup > Ce activity in the SOX experiment. Journal of Physics: Conference Series, 2016, 675, 012035.	0.4	O
120	In-vitro degradation of PLGA nanoparticles in aqueous medium and in stem cell cultures by monitoring the cargo fluorescence spectrum. Polymer Degradation and Stability, 2016, 134, 296-304.	5.8	25
121	First real–time detection of solar pp neutrinos by Borexino. EPJ Web of Conferences, 2016, 121, 01001.	0.3	O
122	The DarkSide awakens. Journal of Physics: Conference Series, 2016, 718, 042016.	0.4	4
123	High significance measurement of the terrestrial neutrino flux with the Borexino detector. Journal of Physics: Conference Series, 2016, 718, 062025.	0.4	1
124	Towards a semiquantitative non invasive characterisation of Tyrian purple dye composition: Convergence of UV–Visible reflectance spectroscopy and fast-high temperature-high performance liquid chromatography with photodiode array detection. Analytica Chimica Acta, 2016, 926, 17-27.	5.4	9
125	Recent results from Borexino and the first real time measure of solar pp neutrinos. Nuclear and Particle Physics Proceedings, 2016, 273-275, 1753-1759.	0.5	0
126	Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement. Journal of Physics: Conference Series, 2016, 675, 012012.	0.4	0

#	Article	IF	CITATIONS
127	The 144Ce source for SOX. Journal of Physics: Conference Series, 2016, 675, 012032.	0.4	2
128	Non-invasive Investigations of Paintings by Portable Instrumentation: The MOLAB Experience. Topics in Current Chemistry, 2016, 374, 10.	5.8	56
129	UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS 1â^'x Se x solid solutions employed as artists' pigments. Microchemical Journal, 2016, 125, 279-289.	4.5	23
130	Visible-induced luminescence imaging: A user-friendly method based on a system of interchangeable and tunable LED light sources. Microchemical Journal, 2016, 125, 130-141.	4.5	13
131	UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd 1â^'x Zn x S solid solutions in cadmium yellow pigments. Microchemical Journal, 2016, 124, 856-867.	4.5	68
132	Test of Electric Charge Conservation with Borexino. Physical Review Letters, 2015, 115, 231802.	7.8	42
133	Neutrino measurements from the Sun and Earth: Results from Borexino. AIP Conference Proceedings, 2015, , .	0.4	1
134	Geo-neutrinos from 1353 Days with the Borexino Detector. Physics Procedia, 2015, 61, 340-344.	1.2	1
135	The DarkSide Multiton Detector for the Direct Dark Matter Search. Advances in High Energy Physics, 2015, 2015, 1-8.	1.1	21
136	MOLAB < sup > \hat{A}^{\otimes} < /sup > meets Persia: Non-invasive study of a sixteenth-century illuminated manuscript. Studies in Conservation, 2015, 60, S185-S192.	1.1	24
137	Direct Search for Dark Matter with DarkSide. Journal of Physics: Conference Series, 2015, 650, 012006.	0.4	9
138	DFT/TDDFT investigation on the UV-vis absorption and fluorescence properties of alizarin dye. Physical Chemistry Chemical Physics, 2015, 17, 6374-6382.	2.8	47
139	First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 743, 456-466.	4.1	186
140	Synchrotron-based X-ray spectromicroscopy and electron paramagnetic resonance spectroscopy to investigate the redox properties of lead chromate pigments under the effect of visible light. Journal of Analytical Atomic Spectrometry, 2015, 30, 1500-1510.	3.0	25
141	Short Distance Neutrino Oscillations with BoreXino: SOX. Physics Procedia, 2015, 61, 511-517.	1.2	3
142	Geo-neutrinos and Borexino. Physics of Particles and Nuclei, 2015, 46, 174-181.	0.7	1
143	Solar neutrino with Borexino: Results and perspectives. Physics of Particles and Nuclei, 2015, 46, 166-173.	0.7	4
144	Spectroscopy of geoneutrinos from 2056 days of Borexino data. Physical Review D, 2015, 92, .	4.7	77

#	Article	IF	Citations
145	Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun. Nuclear and Particle Physics Proceedings, 2015, 265-266, 87-92.	0.5	2
146	An uncovered XIII century icon: Particular use of organic pigments and gilding techniques highlighted by analytical methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 398-404.	3.9	17
147	Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy. Physical Review D, 2014, 89, .	4.7	204
148	Lifetimes of 214Po and 212Po measured with Counting Test Facility at Gran Sasso National Laboratory. Journal of Environmental Radioactivity, 2014, 138, 444-446.	1.7	1
149	Non-invasive investigation of a pre-Hispanic Maya screenfold book: the Madrid Codex. Journal of Archaeological Science, 2014, 42, 166-178.	2.4	28
150	Carthamus tinctorius L.: A photophysical study of the main coloured species for artwork diagnostic purposes. Dyes and Pigments, 2014, 103, 127-137.	3.7	32
151	Neutrinos from the primary proton–proton fusion process in the Sun. Nature, 2014, 512, 383-386.	27.8	250
152	Low energy neutrinos. International Journal of Modern Physics Conference Series, 2014, 31, 1460285.	0.7	0
153	Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS. European Physical Journal A, 2013, 49, 1.	2.5	17
154	The Book of Kells: A non-invasive MOLAB investigation by complementary spectroscopic techniques. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 115, 330-336.	3.9	33
155	SOX: Short distance neutrino Oscillations with BoreXino. Journal of High Energy Physics, 2013, 2013, 1.	4.7	98
156	Study of Raman scattering and luminescence properties of orchil dye for its nondestructive identification on artworks. Journal of Raman Spectroscopy, 2013, 44, 1451-1456.	2.5	21
157	New limits on heavy sterile neutrino mixing in <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">B</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn>8</mml:mn></mml:mmultiscripts>decay obtained with the Borexino detector.</mmi:math>	4.7	29
158	Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches. Astroparticle Physics, 2013, 49, 44-51.	4.3	36
159	Decay time and pulse shape discrimination of liquid scintillators based on novel solvents. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 701, 133-144.	1.6	39
160	Measurement of geo-neutrinos from 1353 days of Borexino. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 722, 295-300.	4.1	92
161	Recent results and future development of Borexino. Nuclear Physics, Section B, Proceedings Supplements, 2013, 235-236, 55-60.	0.4	3
162	Role of heteroaromatic cycles in the inter- and intra-molecular dynamics of excited aryl ketones. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 22-45.	11.6	9

#	Article	IF	CITATIONS
163	Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 049-049.	5.4	63
164	Scientific Investigation of an Important Corpus of Picasso Paintings in Antibes: New Insights into Technique, Condition, and Chronological Sequence. Journal of the American Institute for Conservation, 2013, 52, 184-204.	0.5	25
165	DarkSide search for dark matter. Journal of Instrumentation, 2013, 8, C11021-C11021.	1.2	36
166	Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 015-015.	5.4	47
167	First Evidence of p</mml:mi>c/mml:mi>e</mml:mi>e</mml:mi>p</mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> / mml:mi> <a 1998="" display="inline" href="</td><td>7.8</td><td>213</td></tr><tr><td>168</td><td>First evidence of<i>pep</i>solar neutrinos by direct detection in Borexino. Journal of Physics: Conference Series, 2012, 375, 042030.</td><td>0.4</td><td>1</td></tr><tr><td>169</td><td>Borexino calibrations: hardware, methods, and results. Journal of Instrumentation, 2012, 7, P10018-P10018.</td><td>1.2</td><td>60</td></tr><tr><td>170</td><td>High precision 7Be solar neutrinos measurement and day night effect obtained with Borexino. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 692, 258-261.</td><td>1.6</td><td>0</td></tr><tr><td>171</td><td>xmlns:mml=" http:="" math="" mathml"="" www.w3.org=""><mml:mi>p</mml:mi><mml:mo> stretchy="false">(</mml:mo><mml:mi>d</mml:mi><mml:mo>,</mml:mo><mml:mo><mml:mi>He<td>nml¦mi><r 4.7</r </td><td>nml:mprescri</td></mml:mi></mml:mo>	nml¦mi> <r 4.7</r 	nml:mprescri
172	Borexino detector. Physical Review D, 2012, 85. Photoluminescence Properties of Zinc Oxide in Paints: A Study of the Effect of Self-Absorption and Passivation. Applied Spectroscopy, 2012, 66, 1233-1241.	2.2	45
173	Colouring materials of pre-Columbian codices: non-invasive in situ spectroscopic analysis of the Codex Cospi. Journal of Archaeological Science, 2012, 39, 672-679.	2.4	41
174	A Nd-loaded liquid organic scintillator for the experiment aimed at measuring double \hat{l}^2 decay. Instruments and Experimental Techniques, 2012, 55, 545-550.	0.5	10
175	Measurement of CNGS muon neutrino speed with Borexino. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 716, 401-405.	4.1	33
176	Absence of a day–night asymmetry in the 7Be solar neutrino rate in Borexino. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 707, 22-26.	4.1	83
177	Photochemistry and cultural heritage. What is the impact of light on works of art?., 2011,, 256-284.		4
178	Photophysical properties of alizarin and purpurin Al(III) complexes in solution and in solid state. Photochemical and Photobiological Sciences, 2011, 10, 1249-1254.	2.9	48
179	Material analyses of \hat{a} € Christ with singing and music-making Angels \hat{a} € M, a late 15th-C panel painting attributed to Hans Memling and assistants: Part I. non-invasive in situ investigations. Journal of Analytical Atomic Spectrometry, 2011, 26, 2216.	3.0	43
180	Precision Measurement of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mi>Be </mml:mi>cmml:mprescripts /> <mml:none></mml:none> <mml:mn>7 </mml:mn></mml:mmultiscripts> </mml:math> Solar Neutrino Interaction Rate in Borexino. Physical Review Letters, 2011, 107, 141302.	7.8	441

#	Article	IF	CITATIONS
181	New portable instrument for combined reflectance, time-resolved and steady-state luminescence measurements on works of art. Proceedings of SPIE, 2011, , .	0.8	7
182	Muon and cosmogenic neutron detection in Borexino. Journal of Instrumentation, 2011, 6, P05005-P05005.	1.2	68
183	Production and suppression of [sup 11]C in the solar neutrino experiment Borexino., 2011, , .		0
184	The scintillator solvent procurement for the Borexino solar neutrino detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 648, 100-108.	1.6	2
185	Neutrino interactions at few MeV: results from Borexino at Gran Sasso. Nuclear Physics, Section B, Proceedings Supplements, 2011, 212-213, 121-127.	0.4	0
186	Solar neutrino results from Borexino and main future perspectives. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 630, 210-213.	1.6	2
187	Borexino: recent results, detector calibration and future perspectives. Nuclear Physics, Section B, Proceedings Supplements, 2011, 217, 101-106.	0.4	2
188	Study of solar and other unknown anti-neutrino fluxes with Borexino at LNGS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 696, 191-196.	4.1	60
189	Bleaching of red lake paints in encaustic mummy portraits. Applied Physics A: Materials Science and Processing, 2010, 100, 703-711.	2.3	13
190	Role of the microenvironment on the fluorescent properties of a spirooxazine. Chemical Physics Letters, 2010, 491, 80-85.	2.6	10
191	Observation of geo-neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2010, 687, 299-304.	4.1	187
192	Complexation of apigenin and luteolin in weld lake: a DFT/TDDFT investigation. Physical Chemistry Chemical Physics, 2010, 12, 6672.	2.8	38
193	xmins:mmi="nttp://www.w3.org/1998/Math/Math/Math/Mispiay="inline"> <mmi:mmultiscripts><mmi:mi mathvariant="normal">C<mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mrow><mml:mn>12</mml:mn></mml:mrow>nuclei obtained with<mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.9</td><td>56</td></mml:math></mmi:mi></mmi:mmultiscripts>	2.9	56
194	Fluorescence Spectroscopy: A Powerful Technique for the Noninvasive Characterization of Artwork. Accounts of Chemical Research, 2010, 43, 837-846.	15.6	127
195	Ultravioletâ€"Visible Absorption and Luminescence Properties of Quinacridoneâ€"Barium Sulfate Solid Mixtures. Applied Spectroscopy, 2010, 64, 923-929.	2.2	36
196	Photochromism and Thermochromism of some Spirooxazines and Naphthopyrans in the Solid State and in Polymeric Film. Journal of Physical Chemistry C, 2010, 114, 6123-6131.	3.1	67
197	Measurement of the solar <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi mathvariant="normal">B</mml:mi><mml:mprescripts></mml:mprescripts><mml:mone></mml:mone><mml:mn>8</mml:mn></mml:mmultiscripts></mml:math> neutrino rate with a liquid scintillator target and 3ÂMeV energy threshold in the Borexino detector. Physical Review D. 2010. 82	4.7	214
198	Measurement of the solar 8B neutrino flux down to 2.8 MeV with Borexino. Nuclear Physics, Section B, Proceedings Supplements, 2009, 188, 127-129.	0.4	2

#	Article	IF	Citations
199	The Borexino detector at the Laboratori Nazionali del Gran Sasso. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 568-593.	1.6	292
200	The liquid handling systems for the Borexino solar neutrino detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 609, 58-78.	1.6	71
201	200 days of Borexino data. Nuclear Physics, Section B, Proceedings Supplements, 2009, 188, 90-95.	0.4	0
202	In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 71, 2057-2062.	3.9	39
203	Excited-State Properties of a Photochromic Spirooxazine: Double Pathways for Both Fluorescence Emission and Camphorquinone-Sensitized Reaction. Journal of Physical Chemistry A, 2009, 113, 9424-9433.	2.5	10
204	The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue). Chemical Communications, 2009, , 3392.	4.1	150
205	Application of the Kubelkaâ€"Munk Correction for Self-Absorption of Fluorescence Emission in Carmine Lake Paint Layers. Applied Spectroscopy, 2009, 63, 1323-1330.	2.2	75
206	Vibrational and electronic properties of painting lakes. Applied Physics A: Materials Science and Processing, 2008, 92, 25-33.	2.3	118
207	Photochromic, Thermochromic, and Fluorescent Spirooxazines and Naphthopyrans: A Spectrokinetic and Thermodynamic Study. ChemPhysChem, 2008, 9, 768-775.	2.1	58
208	Photochromic behaviour of Berry Red studied in solution and polymer films. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 196, 190-196.	3.9	15
209	Portable Equipment for Luminescence Lifetime Measurements on Surfaces. Applied Spectroscopy, 2008, 62, 1395-1399.	2.2	50
210	Direct Measurement of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Be</mml:mi><mml:mprescripts></mml:mprescripts><mml:none></mml:none><mml:mn></mml:mn></mml:mmultiscripts></mml:math> Solar Neutrino Flux with 192 Days of Borexino Data. Physical Review Letters, 2008, 101, 091302.	7.8	344
211	Results from the HARP Experiment. AIP Conference Proceedings, 2008, , .	0.4	O
212	New results on solar neutrino fluxes from 192 days of Borexino data. Journal of Physics: Conference Series, 2008, 136, 022001.	0.4	4
213	Nd loaded liquid scintillator to search for 150Nd neutrinoless double beta decay. Journal of Physics: Conference Series, 2008, 136, 042088.	0.4	2
214	Effects of Proximity on the Relaxation Dynamics of Flindersine and 6(5H)-Phenanthridinone. Journal of Physical Chemistry A, 2007, 111, 193-200.	2.5	13
215	Effects of the Exciting Wavelength and Viscosity on the Photobehavior of 9- and 9,10-Bromoanthracenes. Journal of Physical Chemistry A, 2007, 111, 5948-5953.	2.5	9
216	A spectrometric and chromatographic approach to the study of ageing of madder (Rubia tinctorum L.) dyestuff on wool. Analytica Chimica Acta, 2007, 596, 46-54.	5.4	88

#	Article	IF	CITATIONS
217	Photochromic Behavior of 2,2-Spiro-adamantylidene-2H-naphtho[1,2-b]pyran: A New Thermoreversible and Photoreversible Photochromic System¶. Photochemistry and Photobiology, 2007, 72, 632-638.	2.5	3
218	Acidichromism and Ionochromism of Luteolin and Apigenin, the Main Components of the Naturally Occurring Yellow Weld: A Spectrophotometric and Fluorimetric Study. Journal of Fluorescence, 2007, 17, 707-714.	2.5	97
219	In situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 906-912.	3.9	53
220	An NMR and UV–visible spectroscopic study of the principal colored component of Stil de grain lake. Dyes and Pigments, 2006, 71, 218-223.	3.7	16
221	The photoinduced ring opening reaction of benzo(2H)chromenes: a kinetic and thermodynamic approach. Chemical Physics, 2005, 309, 167-175.	1.9	18
222	Vibronic effects in pathways of photochemistry and vibrational relaxation. Chemical Physics, 2005, 316, 108-116.	1.9	13
223	The Ring-Opening Reaction of Chromenes:Â A Photochemical Mode-Dependent Transformation. Journal of Physical Chemistry A, 2005, 109, 8684-8692.	2.5	41
224	Photochemical and thermal degradation of a naturally occurring dye used in artistic painting. A chromatographic, spectrophotometric and fluorimetric study on saffron. International Journal of Photoenergy, 2004, 6, 175-183.	2.5	19
225	Experimental Evidence for the Aggregation of [(Phen)2Pd2($\hat{l}\frac{1}{4}$ -H)($\hat{l}\frac{1}{4}$ -CO)]+ in Solution. Organometallics, 2003, 22, 1526-1533.	2.3	45
226	The complex photochromic behaviour of 5,6-benzo(2H)dimethylchromene in 3-methylpentane solutionThis paper is dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday Photochemical and Photobiological Sciences, 2003, 2, 1032.	2.9	12
227	Unusual UV (λexc = 303 nm) and visible (λexc = 574 nm) activated photochromism of an indernaphthopyran. New Journal of Chemistry, 2003, 27, 639-643.	no-fused	9
228	Photochromic Behavior of a Spiro-indolino-oxazine in Reverse-Mode Polymer-Dispersed Liquid Crystal Films. Journal of Physical Chemistry B, 2002, 106, 9490-9495.	2.6	32
229	Effects of the environment on the photochromic behaviour of a novel indeno-fused naphthopyran. Photochemical and Photobiological Sciences, 2002, 1, 803-808.	2.9	15
230	Role of protolytic interactions in photo-aging processes of carminic acid and carminic lake in solution and painted layers. Perkin Transactions II RSC, 2002, , 192-197.	1.1	3
231	Environmental effects on the photophysics of thienyl ketones investigated by transient absorption and phosphorescence emission in polarized light. Chemical Physics, 2002, 280, 163-175.	1.9	4
232	Spectroscopic study of acrylic resins in solid matrices. Surface and Coatings Technology, 2002, 151-152, 276-280.	4.8	30
233	Chromatic and dynamic characteristics of some photochromes in the components of bifunctional photochromic and electro-optical devices. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 140, 229-236.	3.9	17
234	Prototypes of bifunctional photochromic and electro-optical systems. Journal of Applied Physics, 2001, 90, 4906-4914.	2.5	11

#	Article	IF	CITATIONS
235	Competition Between Vibrational Relaxation and Photochemistry: Relevance of Vibronic Quantum Effectsâ€Â¶. Photochemistry and Photobiology, 2001, 74, 378-384.	2.5	0
236	Competition Between Vibrational Relaxation and Photochemistry: Relevance of Vibronic Quantum Effectsâ€Â¶. Photochemistry and Photobiology, 2001, 74, 378.	2.5	21
237	Acidichromic effects in 1,2-di- and 1,2,4-tri- hydroxyanthraquinones. A spectrophotometric and fluorimetric study., 2000, 13, 141-150.		103
238	A steady-state and time-resolved absorption and emission study of 3-thienyl-phenyl ketone, $3,3\hat{a}\in^2$ -di-thienyl ketone and $2,3\hat{a}\in^2$ -di-thienyl ketone. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 135, 127-134.	3.9	14
239	Surface morphology and composition of some "lustro―decorated fragments of ancient ceramics from Deruta (Central Italy). Applied Surface Science, 2000, 157, 112-122.	6.1	17
240	Photochromic Behavior of 2,2-Spiro-adamantylidene-2H-naphtho [1,2-b] pyran: A New Thermoreversible and Photoreversible Photochromic System \hat{A}_{\P} . Photochemistry and Photobiology, 2000, 72, 632.	2.5	39
241	Light-Induced Hydrogen Abstraction from Isobutanol by Thienyl Phenyl, Dithienyl, and Thienyl Pyridyl Ketones. Journal of Physical Chemistry A, 1999, 103, 1335-1341.	2.5	19
242	Vibronic Quantum Effects in Fluorescence and Photochemistry. Competition between Vibrational Relaxation and Photochemistry and Consequences for Photochemical Control. Journal of the American Chemical Society, 1999, 121, 2104-2109.	13.7	42
243	Proximity effects in the excited state ordering and photophysics of thienyl-pyridyl ketones. Chemical Physics, 1998, 237, 413-424.	1.9	10
244	Authentication and characterisation of pottery sherds from Apricena (FG). Thermochimica Acta, 1998, 321, 191-195.	2.7	3
245	A spectrophotometric and fluorimetric study of some anthraquinoid and indigoid colorants used in artistic paintings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 581-588.	3.9	128
246	A spectrophotometric and phosphorimetric study of a new class of heteroaromatic ketones: the six thienyl-pyridyl ketone isomers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 55, 25-33.	3.9	7
247	Photosensitization of photochromism of spiro-indoline-oxazines by camphorquinone. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 97, 45-52.	3.9	11
248	Thermally reversible photoconversion of spiroindoline-naphtho-oxazines to photomerocyanines: a photochemical and kinetic study. Journal of Photochemistry and Photobiology A: Chemistry, 1995, 87, 235-241.	3.9	75
249	Luminescence properties of camphorquinone at room temperature. Journal of Luminescence, 1995, 63, 183-188.	3.1	27
250	Photophysical Properties of Some Thienyl Ketones: An Experimental and Theoretical Study. The Journal of Physical Chemistry, 1995, 99, 1410-1417.	2.9	30
251	Triplet Reactivity of Spiro-Indolino-Oxazines Studied by Photosensitisation. Molecular Crystals and Liquid Crystals, 1994, 246, 299-302.	0.3	8
252	Acid–base properties of disodium 3,3′-disulfonatobenzophenone (DSB) in the ground and excited states. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 699-702.	1.7	8

Aldo Romani

#	Article	IF	CITATION
253	pH-Induced effects on the photophysics of dipyridyl ketones. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2147.	1.7	68
254	Comment on "The dual phosphorescence of benzophenone in a water-containing solvent at 77 Kâ€. Chemical Physics Letters, 1991, 184, 596-598.	2.6	6
255	An Experimental and Theoretical Study of Acid-Base Properties of Di-Pyridyl Ketones. Zeitschrift Fur Physikalische Chemie, 1990, 168, 55-63.	2.8	5
256	A laser flash photolysis study of di-pyridyl ketones. Chemical Physics, 1990, 144, 107-115.	1.9	14
257	Effect of the nitrogen position on the excited state properties of the six isomeric di-pyridyl-ketones. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 53, 41-49.	3.9	14
258	Absorption and emission properties of the six isomeric di-pyridyl-ketones. Spectrochimica Acta Part A: Molecular Spectroscopy, 1990, 46, 425-427.	0.1	8
259	Effect of pH on the absorption and emission characteristics of di(3-pyridyl)ketone. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989, 45, 339-346.	0.1	11