Jeffrey J Starns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A complete method for assessing the effectiveness of eyewitness identification procedures: Expected information gain Psychological Review, 2023, 130, 677-719.	3.8	3
2	Bias effects in a two-stage recognition paradigm: A challenge for "pure―threshold and signal detection models Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 1484-1506.	0.9	2
3	Does speed of recognition predict two-alternative forced-choice performance? Replicating and extending Starns, Dubé, and Frelinger (2018). Quarterly Journal of Experimental Psychology, 2021, 74, 122-134.	1.1	6
4	Strategies for Using a Spatial Method to Promote Active Learning of Probability Concepts. Journal of Statistics and Data Science Education, 2021, 29, 39-53.	1.6	1
5	Playing With BEARS: Balancing Effort, Accuracy, and Response Speed in a Semantic Feature Verification Anomia Treatment Game. Journal of Speech, Language, and Hearing Research, 2021, 64, 3100-3126.	1.6	10
6	Consensus-based guidance for conducting and reporting multi-analyst studies. ELife, 2021, 10, .	6.0	22
7	High- and low-threshold models of the relationship between response time and confidence Journal of Experimental Psychology: Learning Memory and Cognition, 2021, 47, 671-684.	0.9	3
8	How Much Time Do People With Aphasia Need to Respond During Picture Naming? Estimating Optimal Response Time Cutoffs Using a Multinomial Ex-Gaussian Approach. Journal of Speech, Language, and Hearing Research, 2020, 63, 599-614.	1.6	17
9	Blinded Inference: an Opportunity for Mathematical Modelers to Lead the Way in Research Reform. Computational Brain & Behavior, 2019, 2, 223-228.	1.7	0
10	Assessing Theoretical Conclusions With Blinded Inference to Investigate a Potential Inference Crisis. Advances in Methods and Practices in Psychological Science, 2019, 2, 335-349.	9.4	20
11	A visualization technique for Bayesian reasoning. Applied Cognitive Psychology, 2019, 33, 234-251.	1.6	11
12	Speed–Accuracy Trade-Offs and Adaptation Deficits in Aphasia: Finding the "Sweet Spot―Between Overly Cautious and Incautious Responding. American Journal of Speech-Language Pathology, 2019, 28, 259-277.	1.8	11
13	The Quality of Response Time Data Inference: A Blinded, Collaborative Assessment of the Validity of Cognitive Models. Psychonomic Bulletin and Review, 2019, 26, 1051-1069.	2.8	95
14	The speed of memory errors shows the influence of misleading information: Testing the diffusion model and discrete-state models. Cognitive Psychology, 2018, 102, 21-40.	2.2	9
15	Adding a speed–accuracy trade-off to discrete-state models: A comment on Heck and Erdfelder (2016). Psychonomic Bulletin and Review, 2018, 25, 2406-2416.	2.8	7
16	Response biases in simple decision making: Faster decision making, faster response execution, or both?. Psychonomic Bulletin and Review, 2018, 25, 1535-1541.	2.8	9
17	Estimating across-trial variability parameters of the Diffusion Decision Model: Expert advice and recommendations. Journal of Mathematical Psychology, 2018, 87, 46-75.	1.8	62
18	Guessing versus misremembering in recognition: A comparison of continuous, two-high-threshold, and low-threshold models Journal of Experimental Psychology: Learning Memory and Cognition, 2018, 44, 527-539.	0.9	5

JEFFREY J STARNS

#	Article	IF	CITATIONS
19	Eye movements in forced-choice recognition: Absolute judgments can preclude relative judgments. Journal of Memory and Language, 2017, 93, 55-66.	2.1	16
20	Successful cuing of gender source memory does not improve location source memory. Memory and Cognition, 2016, 44, 650-659.	1.6	6
21	Item strength influences source confidence and alters source memory zROC slopes Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 351-365.	0.9	10
22	A violation of the conditional independence assumption in the two-high-threshold model of recognition memory Journal of Experimental Psychology: Learning Memory and Cognition, 2015, 41, 1215-1222.	0.9	14
23	The Approximate Number System Acuity Redefined: A Diffusion Model Approach. Frontiers in Psychology, 2015, 6, 1955.	2.1	20
24	Using Multidimensional Encoding and Retrieval Contexts to Enhance Our Understanding ofÂStochastic Dependence in Source Memory. Psychology of Learning and Motivation - Advances in Research and Theory, 2015, , 101-140.	1.1	5
25	Shifting the criterion is not the difficult part of trial-by-trial criterion shifts in recognition memory. Memory and Cognition, 2015, 43, 49-59.	1.6	14
26	Recognition memory zROC slopes for items with correct versus incorrect source decisions discriminate the dual process and unequal variance signal detection models Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 1205-1225.	0.9	11
27	Using response time modeling to distinguish memory and decision processes in recognition and source tasks. Memory and Cognition, 2014, 42, 1357-1372.	1.6	17
28	Strength cues and blocking at test promote reliable within-list criterion shifts in recognition memory. Memory and Cognition, 2014, 42, 742-754.	1.6	11
29	Validating the unequal-variance assumption in recognition memory using response time distributions instead of ROC functions: A diffusion model analysis. Journal of Memory and Language, 2014, 70, 36-52.	2.1	46
30	Internal reinstatement hides cuing effects in source memory tasks. Memory and Cognition, 2013, 41, 953-966.	1.6	12
31	Modeling confidence judgments, response times, and multiple choices in decision making: Recognition memory and motion discrimination Psychological Review, 2013, 120, 697-719.	3.8	124
32	Unequal-strength source zROC slopes reflect criteria placement and not (necessarily) memory processes Journal of Experimental Psychology: Learning Memory and Cognition, 2013, 39, 1377-1392.	0.9	16
33	Mixing strong and weak targets provides no evidence against the unequal-variance explanation of ÊROC slope: A comment on Koen and Yonelinas (2010) Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 793-801.	0.9	19
34	Modeling single versus multiple systems in implicit and explicit memory. Trends in Cognitive Sciences, 2012, 16, 195-196.	7.8	3
35	Beyond ROC curvature: Strength effects and response time data support continuous-evidence models of recognition memory. Journal of Memory and Language, 2012, 67, 389-406.	2.1	42
36	The strength-based mirror effect in subjective strength ratings: The evidence for differentiation can be produced without differentiation. Memory and Cognition, 2012, 40, 1189-1199.	1.6	21

JEFFREY J STARNS

#	Article	IF	CITATIONS
37	Diffusion model drift rates can be influenced by decision processes: An analysis of the strength-based mirror effect Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1137-1151.	0.9	44
38	Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonomic Bulletin and Review, 2012, 19, 139-145.	2.8	63
39	Evaluating the unequal-variance and dual-process explanations of zROC slopes with response time data and the diffusion model. Cognitive Psychology, 2012, 64, 1-34.	2.2	90
40	Diffusion models of the flanker task: Discrete versus gradual attentional selection. Cognitive Psychology, 2011, 63, 210-238.	2.2	203
41	The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model Psychology and Aging, 2010, 25, 377-390.	1.6	281
42	A direct test of the differentiation mechanism: REM, BCDMEM, and the strength-based mirror effect in recognition memory. Journal of Memory and Language, 2010, 63, 18-34.	2.1	34
43	Modeling confidence and response time in recognition memory Psychological Review, 2009, 116, 59-83.	3.8	198
44	Two dimensions are not better than one: STREAK and the univariate signal detection model of remember/know performanceâ †. Journal of Memory and Language, 2008, 59, 169-182.	2.1	28
45	Source memory for unrecognized items: Predictions from multivariate signal detection theory. Memory and Cognition, 2008, 36, 1-8.	1.6	57
46	Context attributes in memory are bound to item information, but not to one another. Psychonomic Bulletin and Review, 2008, 15, 309-314.	2.8	33
47	Providing information about diagnostic features at retrieval reduces false recognition. Memory, 2008, 16, 836-851.	1.7	9
48	Metamnemonic control over the discriminability of memory evidence: A signal detection analysis of warning effects in the associative list paradigm. Journal of Memory and Language, 2007, 56, 592-607.	2.1	20
49	Remembering source evidence from associatively related items: Explanations from a global matching model Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 1164-1173.	0.9	23
50	The roles of associative strength and source memorability in the contextualization of false memory. Journal of Memory and Language, 2006, 54, 39-53.	2.1	26
51	On rejecting emotional lures created by phonological neighborhood activation Journal of Experimental Psychology: Learning Memory and Cognition, 2006, 32, 847-853.	0.9	8
52	False memories lack perceptual detail: Evidence from implicit word-stem completion and perceptual identification tests. Journal of Memory and Language, 2005, 52, 309-321.	2.1	35
53	Source Dimensions Are Retrieved Independently in Multidimensional Monitoring Tasks Journal of Experimental Psychology: Learning Memory and Cognition, 2005, 31, 1213-1220.	0.9	51
54	Episodic generation can cause semantic forgetting: Retrieval-induced forgetting of false memories. Memory and Cognition, 2004, 32, 602-609.	1.6	36

#	Article	IF	CITATIONS
55	Retrieval-induced forgetting occurs in tests of item recognition. Psychonomic Bulletin and Review, 2004, 11, 125-130.	2.8	121
56	Boosting confidence without boosting performance: item strength creates the illusion of source accuracy. Memory, 0, , 1-20.	1.7	0