Ludmilla Steier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5905235/publications.pdf

Version: 2024-02-01

31	5,923	24 h-index	30
papers	citations		g-index
31	31	31	9264
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Waterâ€Insensitive Electron Transport and Photoactive Layers for Improved Underwater Stability of Organic Photovoltaics. Advanced Functional Materials, 2022, 32, .	7.8	8
2	Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Gaâ€Gradient in Cu(In,Ga)Se ₂ Solar Cells. Advanced Energy Materials, 2021, 11, 2003446.	10.2	14
3	Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nature Materials, 2021, 20, 511-517.	13.3	82
4	Progress and Perspectives in Photo―and Electrochemicalâ€Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101180.	10.2	200
5	Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Gaâ€Graded Cu(In,Ga)Se ₂ Solar Cells. Advanced Functional Materials, 2021, 31, 2103663.	7.8	7
6	The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials, 2021, 6, 1136-1155.	23.3	161
7	Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes. Journal of Physical Chemistry Letters, 2020, 11, 7285-7290.	2.1	34
8	Pt single-atoms supported on nitrogen-doped carbon dots for highly efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2020, 8, 14690-14696.	5.2	62
9	In situ observation of picosecond polaron self-localisation in $\hat{l}\pm$ -Fe2O3 photoelectrochemical cells. Nature Communications, 2019, 10, 3962.	5.8	93
10	Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts. Journal of the American Chemical Society, 2019, 141, 11219-11229.	6.6	177
11	Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8550-8558.	5.2	19
12	Low-Temperature Nb-Doped SnO ₂ Electron-Selective Contact Yields over 20% Efficiency in Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 773-778.	8.8	157
13	Analysis of Optical Losses in a Photoelectrochemical Cell: A Tool for Precise Absorptance Estimation. Advanced Functional Materials, 2018, 28, 1702768.	7.8	18
14	A bright outlook on organic photoelectrochemical cells for water splitting. Journal of Materials Chemistry A, 2018, 6, 21809-21826.	5.2	53
15	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	2.2	24
16	(Invited) The Benefits of Nanoscale Metal Oxide Films to Solar Fuels Research. ECS Meeting Abstracts, 2018, , .	0.0	0
17	The effect of illumination on the formation of metal halide perovskite films. Nature, 2017, 545, 208-212.	13.7	242
18	A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy and Environmental Science, 2017, 10, 912-918.	15.6	90

#	Article	IF	CITATIONS
19	Ultrathin Buffer Layers of SnO ₂ by Atomic Layer Deposition: Perfect Blocking Function and Thermal Stability. Journal of Physical Chemistry C, 2017, 121, 342-350.	1.5	118
20	Stabilizing organic photocathodes by low-temperature atomic layer deposition of TiO ₂ . Sustainable Energy and Fuels, 2017, 1, 1915-1920.	2.5	43
21	Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2017, 2, .	19.8	436
22	Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy and Environmental Science, 2016, 9, 3128-3134.	15.6	720
23	Highly Efficient and Stable Perovskite Solar Cells based on a Lowâ€Cost Carbon Cloth. Advanced Energy Materials, 2016, 6, 1601116.	10.2	107
24	Cu ₂ O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Letters, 2016, 16, 1848-1857.	4.5	542
25	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	15.6	536
26	Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nature Communications, 2015, 6, 7326.	5.8	295
27	Solution Transformation of Cu ₂ O into CuInS ₂ for Solar Water Splitting. Nano Letters, 2015, 15, 1395-1402.	4.5	108
28	Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. ACS Nano, 2015, 9, 11775-11783.	7.3	70
29	Highly efficient planar perovskite solar cells through band alignment engineering. Energy and Environmental Science, 2015, 8, 2928-2934.	15.6	1,097
30	On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy and Environmental Science, 2014, 7, 4044-4052.	15.6	121
31	Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes. Advanced Functional Materials, 2014, 24, 7681-7688.	7.8	289