Douglas R Green

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondria and Apoptosis. Science, 1998, 281, 1309-1312.	12.6	7,980
2	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
3	The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis. Science, 1997, 275, 1132-1136.	12.6	4,488
4	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
5	The Pathophysiology of Mitochondrial Cell Death. Science, 2004, 305, 626-629.	12.6	2,960
6	Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl Journal of Experimental Medicine, 1995, 182, 1545-1556.	8.5	2,694
7	Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death and Differentiation, 2009, 16, 3-11.	11.2	2,572
8	Suppression of TNF-α-Induced Apoptosis by NF-κB. Science, 1996, 274, 787-789.	12.6	2,565
9	Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death and Differentiation, 2012, 19, 107-120.	11.2	2,144
10	Direct Activation of Bax by p53 Mediates Mitochondrial Membrane Permeabilization and Apoptosis. Science, 2004, 303, 1010-1014.	12.6	2,143
11	Mitochondria and cell death: outer membrane permeabilization and beyond. Nature Reviews Molecular Cell Biology, 2010, 11, 621-632.	37.0	2,075
12	Fas Ligand-Induced Apoptosis as a Mechanism of Immune Privilege. Science, 1995, 270, 1189-1192.	12.6	1,936
13	Ordering the Cytochrome c–initiated Caspase Cascade: Hierarchical Activation of Caspases-2, -3, -6, -7, -8, and -10 in a Caspase-9–dependent Manner. Journal of Cell Biology, 1999, 144, 281-292.	5.2	1,745
14	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	14.3	1,698
15	HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine, 2011, 208, 1367-1376.	8.5	1,447
16	Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nature Cell Biology, 2000, 2, 469-475.	10.3	1,358
17	Protease activation during apoptosis: Death by a thousand cuts?. Cell, 1995, 82, 349-352.	28.9	1,345
18	Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane. Cell, 2002, 111, 331-342.	28.9	1,337

#	Article	IF	CITATIONS
19	Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature, 1995, 373, 441-444.	27.8	1,305
20	The BCL-2 Family Reunion. Molecular Cell, 2010, 37, 299-310.	9.7	1,295
21	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
22	Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature, 2007, 450, 1253-1257.	27.8	1,181
23	Apoptotic Pathways. Cell, 1998, 94, 695-698.	28.9	1,141
24	Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO Journal, 1998, 17, 37-49.	7.8	1,106
25	BH3 Domains of BH3-Only Proteins Differentially Regulate Bax-Mediated Mitochondrial Membrane Permeabilization Both Directly and Indirectly. Molecular Cell, 2005, 17, 525-535.	9.7	1,065
26	Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature, 2011, 471, 363-367.	27.8	1,059
27	A matter of life and death. Cancer Cell, 2002, 1, 19-30.	16.8	1,008
28	Chemical Inhibition of the Mitochondrial Division Dynamin Reveals Its Role in Bax/Bak-Dependent Mitochondrial Outer Membrane Permeabilization. Developmental Cell, 2008, 14, 193-204.	7.0	992
29	Mitochondria and the Autophagy–Inflammation–Cell Death Axis in Organismal Aging. Science, 2011, 333, 1109-1112.	12.6	983
30	The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biology, 2000, 2, 156-162.	10.3	973
31	Immunogenic and tolerogenic cell death. Nature Reviews Immunology, 2009, 9, 353-363.	22.7	970
32	Apoptotic Pathways. Cell, 2000, 102, 1-4.	28.9	968
33	Cytoplasmic functions of the tumour suppressor p53. Nature, 2009, 458, 1127-1130.	27.8	965
34	Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature, 1992, 359, 552-554.	27.8	957
35	Necroptosis. New England Journal of Medicine, 2014, 370, 455-465.	27.0	919
36	c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells. Cell, 2012, 151, 68-79.	28.9	907

#	Article	IF	CITATIONS
37	Breaking the mitochondrial barrier. Nature Reviews Molecular Cell Biology, 2001, 2, 63-67.	37.0	883
38	Cytochrome c: functions beyond respiration. Nature Reviews Molecular Cell Biology, 2008, 9, 532-542.	37.0	875
39	A Unified Model for Apical Caspase Activation. Molecular Cell, 2003, 11, 529-541.	9.7	855
40	The Lymphotoxin-β Receptor Induces Different Patterns of Gene Expression via Two NF-κB Pathways. Immunity, 2002, 17, 525-535.	14.3	842
41	How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?. Trends in Cell Biology, 2008, 18, 157-164.	7.9	839
42	Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 2015, 7, a006080.	5.5	822
43	Suicidal Tendencies: Apoptotic Cell Death by Caspase Family Proteinases. Journal of Biological Chemistry, 1999, 274, 20049-20052.	3.4	813
44	Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death and Differentiation, 2015, 22, 58-73.	11.2	811
45	Synchronized renal tubular cell death involves ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16836-16841.	7.1	801
46	Acid Sphingomyelinase–Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis. Cell, 1996, 86, 189-199.	28.9	780
47	Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1. Molecular Cell, 2006, 21, 749-760.	9.7	759
48	Distinct Caspase Cascades Are Initiated in Receptor-mediated and Chemical-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 5053-5060.	3.4	729
49	The central executioners of apoptosis: caspases or mitochondria?. Trends in Cell Biology, 1998, 8, 267-271.	7.9	718
50	Apoptotic Pathways: Ten Minutes to Dead. Cell, 2005, 121, 671-674.	28.9	710
51	Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science, 1992, 257, 212-214.	12.6	708
52	The machinery of programmed cell death. , 2001, 92, 57-70.		704
53	Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2Âand autophagy proteins. Nature Cell Biology, 2015, 17, 893-906.	10.3	702
54	DNA Damaging Agents Induce Expression of Fas Ligand and Subsequent Apoptosis in T Lymphocytes via the Activation of NF-κB and AP-1. Molecular Cell, 1998, 1, 543-551.	9.7	689

#	Article	IF	CITATIONS
55	Necroptosis in development, inflammation and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 127-136.	37.0	687
56	Pro-caspase-3 Is a Major Physiologic Target of Caspase-8. Journal of Biological Chemistry, 1998, 273, 27084-27090.	3.4	653
57	Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nature Reviews Drug Discovery, 2017, 16, 487-511.	46.4	642
58	Bax-induced Caspase Activation and Apoptosis via Cytochromec Release from Mitochondria Is Inhibitable by Bcl-xL. Journal of Biological Chemistry, 1999, 274, 2225-2233.	3.4	638
59	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
60	To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate. Cell, 2014, 157, 65-75.	28.9	606
61	Autophagy-Independent Functions of the Autophagy Machinery. Cell, 2019, 177, 1682-1699.	28.9	591
62	Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17396-17401.	7.1	585
63	C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature, 2014, 506, 451-455.	27.8	559
64	CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature, 2005, 434, 88-93.	27.8	547
65	Disruption of Mitochondrial Function during Apoptosis Is Mediated by Caspase Cleavage of the p75 Subunit of Complex I of the Electron Transport Chain. Cell, 2004, 117, 773-786.	28.9	543
66	Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during <i>Yersinia</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10888-E10897.	7.1	541
67	Activation-induced cell death in T cells. Immunological Reviews, 2003, 193, 70-81.	6.0	538
68	Metabolic control of cell death. Science, 2014, 345, 1250256.	12.6	527
69	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	7.8	527
70	Induction of Immunological Tolerance by Apoptotic Cells Requires Caspase-Dependent Oxidation of High-Mobility Group Box-1 Protein. Immunity, 2008, 29, 21-32.	14.3	518
71	Caspaseâ€8: regulating life and death. Immunological Reviews, 2017, 277, 76-89.	6.0	503
72	Mechanisms of p53-dependent apoptosis. Biochemical Society Transactions, 2001, 29, 684-688.	3.4	502

5

#	Article	IF	CITATIONS
73	A Unified Model of Mammalian BCL-2 Protein Family Interactions at the Mitochondria. Molecular Cell, 2011, 44, 517-531.	9.7	502
74	PUMA Couples the Nuclear and Cytoplasmic Proapoptotic Function of p53. Science, 2005, 309, 1732-1735.	12.6	500
75	Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature, 1989, 339, 625-626.	27.8	498
76	Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science, 2016, 352, 1116-1120.	12.6	498
77	Proteolysis of Fodrin (Non-erythroid Spectrin) during Apoptosis. Journal of Biological Chemistry, 1995, 270, 6425-6428.	3.4	491
78	Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death and Differentiation, 2006, 13, 1396-1402.	11.2	491
79	p53 Induces Apoptosis by Caspase Activation through Mitochondrial Cytochrome c Release. Journal of Biological Chemistry, 2000, 275, 7337-7342.	3.4	485
80	Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proceedings of the United States of America, 2013, 110, 12024-12029.	7.1	485
81	ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell, 2017, 169, 286-300.e16.	28.9	477
82	Autosis is a Na ⁺ ,K ⁺ -ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20364-20371.	7.1	470
83	RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8 ⁺ T cells. Science, 2015, 350, 328-334.	12.6	466
84	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 129, 983-997.	28.9	464
85	Chapter 9 The End of the (Cell) Line: Methods for the Study of Apoptosis in Vitro. Methods in Cell Biology, 1995, 46, 153-185.	1.1	459
86	RIPK1 Blocks Early Postnatal Lethality Mediated by Caspase-8 and RIPK3. Cell, 2014, 157, 1189-1202.	28.9	452
87	MOMP, cell suicide as a BCL-2 family business. Cell Death and Differentiation, 2018, 25, 46-55.	11.2	450
88	Unequal Death in T Helper Cell (Th)1 and Th2 Effectors: Th1, but not Th2, Effectors Undergo Rapid Fas/FasL-mediated Apoptosis. Journal of Experimental Medicine, 1997, 185, 1837-1849.	8.5	448
89	Withdrawal of Survival Factors Results in Activation of the JNK Pathway in Neuronal Cells Leading to Fas Ligand Induction and Cell Death. Molecular and Cellular Biology, 1999, 19, 751-763.	2.3	442
90	Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. Journal of Cell Biology, 2003, 160, 65-75.	5.2	440

#	Article	IF	CITATIONS
91	Programmed necrosis in inflammation: Toward identification of the effector molecules. Science, 2016, 352, aaf2154.	12.6	431
92	FADD and Caspase-8 Mediate Priming and Activation of the Canonical and Noncanonical Nlrp3 Inflammasomes. Journal of Immunology, 2014, 192, 1835-1846.	0.8	429
93	Caspase-3 Is the Primary Activator of Apoptotic DNA Fragmentation via DNA Fragmentation Factor-45/Inhibitor of Caspase-activated DNase Inactivation. Journal of Biological Chemistry, 1999, 274, 30651-30656.	3.4	426
94	Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells. Journal of Immunology, 2014, 192, 3626-3636.	0.8	425
95	FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity, 1995, 2, 341-351.	14.3	421
96	Metabolic checkpoints in activated T cells. Nature Immunology, 2012, 13, 907-915.	14.5	413
97	Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biology, 2011, 13, 1437-1442.	10.3	409
98	Stress management – heat shock protein-70 and the regulation of apoptosis. Trends in Cell Biology, 2001, 11, 6-10.	7.9	402
99	Mitochondrial Regulation of Cell Death. Cold Spring Harbor Perspectives in Biology, 2013, 5, a008706-a008706.	5.5	396
100	Dissecting p53-dependent apoptosis. Cell Death and Differentiation, 2006, 13, 994-1002.	11.2	395
101	The clearance of dead cells by efferocytosis. Nature Reviews Molecular Cell Biology, 2020, 21, 398-414.	37.0	395
102	Cytochrome C Maintains Mitochondrial Transmembrane Potential and Atp Generation after Outer Mitochondrial Membrane Permeabilization during the Apoptotic Process. Journal of Cell Biology, 2001, 153, 319-328.	5.2	391
103	Sphingolipid Metabolism Cooperates with BAK and BAX to Promote the Mitochondrial Pathway of Apoptosis. Cell, 2012, 148, 988-1000.	28.9	377
104	Autophagy is essential for effector CD8+ T cell survival and memory formation. Nature Immunology, 2014, 15, 1152-1161.	14.5	367
105	CD95-Induced Apoptosis of Lymphocytes in an Immune Privileged Site Induces Immunological Tolerance. Immunity, 1996, 5, 7-16.	14.3	366
106	Inhibition of TNF-induced apoptosis by NF-κB. Trends in Cell Biology, 1998, 8, 107-111.	7.9	365
107	Dynamic programming of CD8+ T lymphocyte responses. Nature Immunology, 2003, 4, 361-365.	14.5	357
108	Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nature Immunology, 2016, 17, 277-285.	14.5	357

#	Article	IF	CITATIONS
109	Somatic mutations in the p53 tumor suppressor gene in rheumatoid arthritis synovium. Proceedings of the United States of America, 1997, 94, 10895-10900.	7.1	352
110	Many players in BCL-2 family affairs. Trends in Biochemical Sciences, 2014, 39, 101-111.	7.5	352
111	Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO Journal, 1997, 16, 4639-4649.	7.8	350
112	Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusionÂto respiration. Nature Cell Biology, 2012, 14, 575-583.	10.3	347
113	The Coming Decade of Cell Death Research: Five Riddles. Cell, 2019, 177, 1094-1107.	28.9	347
114	Mitochondria and cell signalling. Journal of Cell Science, 2012, 125, 807-815.	2.0	345
115	Dicing with death: dissecting the components of the apoptosis machinery. Trends in Biochemical Sciences, 1994, 19, 26-30.	7.5	343
116	The NOD-Like Receptor NLRP12 Attenuates Colon Inflammation and Tumorigenesis. Cancer Cell, 2011, 20, 649-660.	16.8	343
117	Mitochondrial dysfunction in ataxia-telangiectasia. Blood, 2012, 119, 1490-1500.	1.4	326
118	LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer's Disease. Cell, 2019, 178, 536-551.e14.	28.9	326
119	Phosphatidylserine Externalization during CD95-induced Apoptosis of Cells and Cytoplasts Requires ICE/CED-3 Protease Activity. Journal of Biological Chemistry, 1996, 271, 28753-28756.	3.4	322
120	p73 Induces Apoptosis via PUMA Transactivation and Bax Mitochondrial Translocation. Journal of Biological Chemistry, 2004, 279, 8076-8083.	3.4	321
121	Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology, 2013, 14, 480-488.	14.5	320
122	Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes. Immunity, 2012, 37, 986-997.	14.3	315
123	Calpain Functions in a Caspase-Independent Manner to Promote Apoptosis-Like Events During Platelet Activation. Blood, 1999, 94, 1683-1692.	1.4	313
124	Acridine Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4493-pdb.prot4493.	0.3	313
125	The Pro-Apoptotic Proteins, Bid and Bax, Cause a Limited Permeabilization of the Mitochondrial Outer Membrane That Is Enhanced by Cytosol. Journal of Cell Biology, 1999, 147, 809-822.	5.2	312
126	Immunoregulatory T-Cell Pathways. Annual Review of Immunology, 1983, 1, 439-461.	21.8	303

#	Article	IF	CITATIONS
127	Caspase-independent cell death: leaving the set without the final cut. Oncogene, 2008, 27, 6452-6461.	5.9	303
128	Noncanonical Autophagy Promotes the Visual Cycle. Cell, 2013, 154, 365-376.	28.9	303
129	Cell death and tissue remodeling in planarian regeneration. Developmental Biology, 2010, 338, 76-85.	2.0	300
130	Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death and Differentiation, 2016, 23, 76-88.	11.2	300
131	Die another way – non-apoptotic mechanisms of cell death. Journal of Cell Science, 2014, 127, 2135-2144.	2.0	299
132	RIPK3 Activates Parallel Pathways of MLKL-Driven Necroptosis and FADD-Mediated Apoptosis to Protect against Influenza A Virus. Cell Host and Microbe, 2016, 20, 13-24.	11.0	299
133	Granzyme B Short-Circuits the Need for Caspase 8 Activity during Granule-Mediated Cytotoxic T-Lymphocyte Killing by Directly Cleaving Bid. Molecular and Cellular Biology, 2000, 20, 3781-3794.	2.3	298
134	Bcr-Abl Exerts Its Antiapoptotic Effect Against Diverse Apoptotic Stimuli Through Blockage of Mitochondrial Release of Cytochrome C and Activation of Caspase-3. Blood, 1998, 91, 1700-1705.	1.4	297
135	Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature, 2006, 440, 1064-1068.	27.8	295
136	Chk1 Suppresses a Caspase-2 Apoptotic Response to DNA Damage that Bypasses p53, Bcl-2, and Caspase-3. Cell, 2008, 133, 864-877.	28.9	295
137	Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell, 2003, 4, 371-381.	16.8	289
138	Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death and Differentiation, 2008, 15, 322-331.	11.2	288
139	Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell, 2020, 180, 1115-1129.e13.	28.9	288
140	Do inducers of apoptosis trigger caspase-independent cell death?. Nature Reviews Molecular Cell Biology, 2005, 6, 268-275.	37.0	287
141	The ubiquitin–protein ligase Itch regulates p73 stability. EMBO Journal, 2005, 24, 836-848.	7.8	286
142	Survival Function of the FADD-CASPASE-8-cFLIPL Complex. Cell Reports, 2012, 1, 401-407.	6.4	285
143	Granzyme B–Mediated Cytochrome C Release Is Regulated by the Bcl-2 Family Members Bid and Bax. Journal of Experimental Medicine, 2000, 192, 1391-1402.	8.5	276
144	Selective cleavage of nuclear autoantigens during CD95 (Fas/APO-1)-mediated T cell apoptosis Journal of Experimental Medicine, 1996, 184, 765-770.	8.5	273

#	Article	IF	CITATIONS
145	Caspases Induce Cytochrome c Release from Mitochondria by Activating Cytosolic Factors. Journal of Biological Chemistry, 1999, 274, 17484-17490.	3.4	270
146	Changes in Endoplasmic Reticulum Luminal Environment Affect Cell Sensitivity to Apoptosis. Journal of Cell Biology, 2000, 150, 731-740.	5.2	262
147	How cells die: Apoptosis pathwaysâ~†â~†â~†. Journal of Allergy and Clinical Immunology, 2001, 108, S99-S103.	2.9	261
148	Connected to Death: The (Unexpurgated) Mitochondrial Pathway of Apoptosis. Science, 2005, 310, 66-67.	12.6	255
149	Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner. Journal of Immunology, 2012, 189, 5508-5512.	0.8	254
150	STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell, 2017, 171, 809-823.e13.	28.9	248
151	The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nature Immunology, 2011, 12, 888-897.	14.5	247
152	HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor κB. Nature Medicine, 1997, 3, 1117-1123.	30.7	245
153	The Autophagy Machinery Controls Cell Death Switching between Apoptosis and Necroptosis. Developmental Cell, 2016, 37, 337-349.	7.0	245
154	The role of Fas ligand in immune privilege. Nature Reviews Molecular Cell Biology, 2001, 2, 917-924.	37.0	243
155	RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death and Differentiation, 2014, 21, 1511-1521.	11.2	242
156	LC3-Associated Phagocytosis in Myeloid Cells Promotes Tumor Immune Tolerance. Cell, 2018, 175, 429-441.e16.	28.9	242
157	Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis. Cell Reports, 2013, 5, 878-885.	6.4	240
158	The clearance of dying cells: table for two. Cell Death and Differentiation, 2016, 23, 915-926.	11.2	239
159	Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Trends in Immunology, 2000, 21, 78-82.	7.5	237
160	Metabolic maintenance of cell asymmetry following division in activated T lymphocytes. Nature, 2016, 532, 389-393.	27.8	235
161	Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nature Cell Biology, 2007, 9, 1057-1065.	10.3	233
162	Activation-induced apoptosis in lymphocytes. Current Opinion in Immunology, 1994, 6, 476-487.	5.5	232

#	Article	IF	CITATIONS
163	Novel roles for GAPDH in cell death and carcinogenesis. Cell Death and Differentiation, 2009, 16, 1573-1581.	11.2	232
164	Regulation of Fas-Ligand Expression during Activation-induced Cell Death in T Lymphocytes via Nuclear Factor κB. Journal of Biological Chemistry, 1999, 274, 987-992.	3.4	229
165	Apoptosis and oncogenesis: give and take in the BCL-2 family. Current Opinion in Genetics and Development, 2011, 21, 12-20.	3.3	224
166	p53 and Metabolism: Inside the TIGAR. Cell, 2006, 126, 30-32.	28.9	218
167	Contrasuppression. A novel immunoregulatory activity Journal of Experimental Medicine, 1981, 153, 1533-1546.	8.5	216
168	Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7385-7390.	7.1	215
169	Bcl-2-independent Bcr–Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene, 1998, 16, 1383-1390.	5.9	207
170	Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11573-11578.	7.1	207
171	LC3-Associated Phagocytosis and Inflammation. Journal of Molecular Biology, 2017, 429, 3561-3576.	4.2	207
172	Pharmacological manipulation of cell death: clinical applications in sight?. Journal of Clinical Investigation, 2005, 115, 2610-2617.	8.2	206
173	Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3. Nature Communications, 2015, 6, 7515.	12.8	205
174	A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12095-12100.	7.1	204
175	Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proceedings of the United States of America, 2008, 105, 20327-20332.	7.1	204
176	Cytochrome c is released in a single step during apoptosis. Cell Death and Differentiation, 2005, 12, 453-462.	11.2	202
177	BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation. Cell, 2016, 165, 421-433.	28.9	197
178	FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochemical Journal, 2011, 433, 447-457.	3.7	194
179	Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10025-10030.	7.1	193
180	The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity, 2016, 45, 513-526.	14.3	191

#	Article	IF	CITATIONS
181	Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10868-10872.	7.1	187
182	Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death and Differentiation, 2008, 15, 1139-1146.	11.2	186
183	Autophagy in tumour immunity and therapy. Nature Reviews Cancer, 2021, 21, 281-297.	28.4	185
184	Sequential Engagement of Distinct MLKL Phosphatidylinositol-Binding Sites Executes Necroptosis. Molecular Cell, 2016, 61, 589-601.	9.7	183
185	In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biology, 2006, 8, 72-77.	10.3	181
186	BID-induced structural changes in BAK promote apoptosis. Nature Structural and Molecular Biology, 2013, 20, 589-597.	8.2	181
187	Galectin-7 (PIG1) Exhibits Pro-apoptotic Function through JNK Activation and Mitochondrial Cytochrome cRelease. Journal of Biological Chemistry, 2002, 277, 3487-3497.	3.4	178
188	Inducible Dimerization and Inducible Cleavage Reveal a Requirement for Both Processes in Caspase-8 Activation. Journal of Biological Chemistry, 2010, 285, 16632-16642.	3.4	178
189	Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1 î± -dependent. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1564-1569.	7.1	177
190	Transforming Growth Factor β1 Inhibits Fas Ligand Expression and Subsequent Activation-induced Cell Death in T Cells via Downregulation of c-Myc. Journal of Experimental Medicine, 1999, 189, 231-239.	8.5	176
191	Uptake of Apoptotic Antigen-Coupled Cells by Lymphoid Dendritic Cells and Cross-Priming of CD8+ T Cells Produce Active Immune Unresponsiveness. Journal of Immunology, 2002, 168, 5589-5595.	0.8	174
192	Death receptors bind SHP-1 and block cytokine-induced anti-apoptotic signaling in neutrophils. Nature Medicine, 2002, 8, 61-67.	30.7	172
193	Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death and Differentiation, 1998, 5, 298-306.	11.2	171
194	The multidomain proapoptotic molecules Bax and Bak are directly activated by heat. Proceedings of the United States of America, 2005, 102, 17975-17980.	7.1	170
195	Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death and Differentiation, 1998, 5, 1051-1061.	11.2	168
196	Resistance to Caspase-Independent Cell Death Requires Persistence of Intact Mitochondria. Developmental Cell, 2010, 18, 802-813.	7.0	165
197	T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8706-8711.	7.1	163
198	Degradation of Retinoblastoma Protein in Tumor Necrosis Factor- and CD95-induced Cell Death. Journal of Biological Chemistry, 1997, 272, 9613-9616.	3.4	161

#	Article	IF	CITATIONS
199	The role of ARK in stress-induced apoptosis in Drosophila cells. Journal of Cell Biology, 2002, 156, 1077-1087.	5.2	159
200	RIPK-Dependent Necrosis and Its Regulation by Caspases: A Mystery in Five Acts. Molecular Cell, 2011, 44, 9-16.	9.7	159
201	Transcription, apoptosis and p53: catch-22. Trends in Genetics, 2005, 21, 182-187.	6.7	157
202	Granzyme B-mediated Apoptosis Proceeds Predominantly through a Bcl-2-inhibitable Mitochondrial Pathway. Journal of Biological Chemistry, 2001, 276, 12060-12067.	3.4	156
203	PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Nature Chemical Biology, 2013, 9, 163-168.	8.0	150
204	Cutting Edge: Endoplasmic Reticulum Stress Licenses Macrophages To Produce Mature IL-1β in Response to TLR4 Stimulation through a Caspase-8– and TRIF-Dependent Pathway. Journal of Immunology, 2014, 192, 2029-2033.	0.8	149
205	Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria. Journal of the American Chemical Society, 2018, 140, 1215-1218.	13.7	149
206	The Noncanonical Role of ULK/ATG1 in ER-to-Golgi Trafficking Is Essential for Cellular Homeostasis. Molecular Cell, 2016, 62, 491-506.	9.7	148
207	Granzyme B Mimics Apical Caspases. Journal of Biological Chemistry, 1998, 273, 34278-34283.	3.4	147
208	Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction, 2011, 141, 759-765.	2.6	146
209	Metabolic reprogramming and metabolic dependency in <scp>T</scp> cells. Immunological Reviews, 2012, 249, 14-26.	6.0	146
210	Inducible Nonlymphoid Expression of Fas Ligand Is Responsible for Superantigen-Induced Peripheral Deletion of T Cells. Immunity, 1998, 9, 711-720.	14.3	145
211	Tollâ€like receptor signaling in the lysosomal pathways. Immunological Reviews, 2009, 227, 203-220.	6.0	145
212	It cuts both ways: reconciling the dual roles of caspase 8 in cell death and survival. Nature Reviews Molecular Cell Biology, 2011, 12, 757-763.	37.0	145
213	LC3-associated phagocytosis at a glance. Journal of Cell Science, 2019, 132, .	2.0	144
214	Apoptosis and cancer: the failure of controls on cell death and cell survival. Critical Reviews in Oncology/Hematology, 1995, 18, 137-153.	4.4	142
215	PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology. PLoS Pathogens, 2010, 6, e1001014.	4.7	142
216	Collapse of the Inner Mitochondrial Transmembrane Potential Is Not Required for Apoptosis of HL60 Cells. Experimental Cell Research, 1999, 251, 166-174.	2.6	139

#	Article	IF	CITATIONS
217	RelB/p50 Dimers Are Differentially Regulated by Tumor Necrosis Factor-α and Lymphotoxin-β Receptor Activation. Journal of Biological Chemistry, 2003, 278, 23278-23284.	3.4	139
218	Fas-ligand: Privilege and peril. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5986-5990.	7.1	137
219	Role of Acidic Sphingomyelinase in Fas/CD95-mediated Cell Death. Journal of Biological Chemistry, 2000, 275, 8657-8663.	3.4	137
220	Atg8 Transfer from Atg7 to Atg3: A Distinctive E1-E2 Architecture and Mechanism in the Autophagy Pathway. Molecular Cell, 2011, 44, 451-461.	9.7	135
221	Regulation of Joint Destruction and Inflammation by p53 in Collagen-Induced Arthritis. American Journal of Pathology, 2002, 160, 123-130.	3.8	134
222	Mitochondria in cell death. Essays in Biochemistry, 2010, 47, 99-114.	4.7	132
223	Fas (CD95) participates in peripheral T cell deletion and associated apoptosis in vivo. International Immunology, 1995, 7, 1451-1458.	4.0	131
224	Caspase-2–induced Apoptosis Requires Bid Cleavage: A Physiological Role for Bid in Heat Shock–induced Death. Molecular Biology of the Cell, 2006, 17, 2150-2157.	2.1	131
225	Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature, 2008, 456, 404-408.	27.8	131
226	Characterization of Cytoplasmic Caspase-2 Activation by Induced Proximity. Molecular Cell, 2009, 35, 830-840.	9.7	131
227	Anthracyclines Induce DNA Damage Response-Mediated Protection against Severe Sepsis. Immunity, 2013, 39, 874-884.	14.3	131
228	Regulation of the Fas Apoptotic Cell Death Pathway by Abl. Journal of Biological Chemistry, 1995, 270, 22625-22631.	3.4	130
229	Protective Roles for Caspase-8 and cFLIP in Adult Homeostasis. Cell Reports, 2013, 5, 340-348.	6.4	130
230	At the gates of death. Cancer Cell, 2006, 9, 328-330.	16.8	128
231	Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α-Induced Shock. Molecular Medicine, 2012, 18, 577-586.	4.4	127
232	Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Reports, 2017, 19, 1640-1653.	6.4	127
233	Apoptosis: checkpoint at the mitochondrial frontier. Mutation Research DNA Repair, 1999, 434, 243-251.	3.7	126
234	The â€~harmless' release of cytochrome c. Cell Death and Differentiation, 2000, 7, 1192-1199.	11.2	126

#	Article	IF	CITATIONS
235	And all of a sudden it's over: mitochondrial outer-membrane permeabilization in apoptosis. Biochimie, 2002, 84, 113-121.	2.6	125
236	Role of Proteolysis in Caspase-8 Activation and Stabilization. Biochemistry, 2007, 46, 4398-4407.	2.5	124
237	Remodeling for Demolition. Molecular Cell, 2002, 9, 1-3.	9.7	123
238	A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development. Cancer Cell, 2017, 32, 342-359.e10.	16.8	122
239	HIV-1 Vpr Induces Apoptosis through Caspase 9 in T Cells and Peripheral Blood Mononuclear Cells. Journal of Biological Chemistry, 2002, 277, 37820-37831.	3.4	121
240	Myeloid-Derived Suppressor Activity Is Mediated by Monocytic Lineages Maintained by Continuous Inhibition of Extrinsic and Intrinsic Death Pathways. Immunity, 2014, 41, 947-959.	14.3	121
241	Polyamine metabolism is a central determinant of helper TÂcell lineage fidelity. Cell, 2021, 184, 4186-4202.e20.	28.9	121
242	GSK3-Mediated BCL-3 Phosphorylation Modulates Its Degradation and Its Oncogenicity. Molecular Cell, 2004, 16, 35-45.	9.7	119
243	TLR2 and RIP2 Pathways Mediate Autophagy of Listeria monocytogenes via Extracellular Signal-regulated Kinase (ERK) Activation. Journal of Biological Chemistry, 2011, 286, 42981-42991.	3.4	119
244	Fas ligand- mediated killing by intestinal intraepithelial lymphocytes. Participation in intestinal graft-versus-host disease Journal of Clinical Investigation, 1998, 101, 570-577.	8.2	119
245	Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife, 2018, 7, .	6.0	116
246	Caspase-8 Modulates Dectin-1 and Complement Receptor 3–Driven IL-1β Production in Response to β-Glucans and the Fungal Pathogen, <i>Candida albicans</i> . Journal of Immunology, 2014, 193, 2519-2530.	0.8	114
247	Fas and Fas ligand in gut and liver. American Journal of Physiology - Renal Physiology, 2000, 278, G354-G366.	3.4	112
248	Caspase-12 Modulates NOD Signaling and Regulates Antimicrobial Peptide Production and Mucosal Immunity. Cell Host and Microbe, 2008, 3, 146-157.	11.0	111
249	O-GlcNAc Transferase Suppresses Inflammation and Necroptosis by Targeting Receptor-Interacting Serine/Threonine-Protein Kinase 3. Immunity, 2019, 50, 576-590.e6.	14.3	111
250	Activation-induced cell death in murine T cell hybridomas. Differential regulation of Fas (CD95) versus Fas ligand expression by cyclosporin A and FK506. International Immunology, 1996, 8, 1017-1026.	4.0	109
251	Defective Cytochrome c-dependent Caspase Activation in Ovarian Cancer Cell Lines due to Diminished or Absent Apoptotic Protease Activating Factor-1 Activity. Journal of Biological Chemistry, 2001, 276, 34244-34251.	3.4	107
252	The Two Faces of Receptor Interacting Protein Kinase-1. Molecular Cell, 2014, 56, 469-480.	9.7	105

#	Article	IF	CITATIONS
253	The Point of No Return: Mitochondria, Caspases, and the Commitment to Cell Death. Results and Problems in Cell Differentiation, 1998, 24, 45-61.	0.7	104
254	Phosphorylation of Tip60 by GSK-3 Determines the Induction of PUMA and Apoptosis by p53. Molecular Cell, 2011, 42, 584-596.	9.7	104
255	Caspase-2: the orphan caspase. Cell Death and Differentiation, 2012, 19, 51-57.	11.2	104
256	Mitochondrial pathway of apoptosis is ancestral in metazoans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4904-4909.	7.1	104
257	Lymphoma models for B cell activation and tolerance. X. Anti-mu-mediated growth arrest and apoptosis of murine B cell lymphomas is prevented by the stabilization of myc Journal of Experimental Medicine, 1994, 179, 221-228.	8.5	103
258	The evolution of a mechanism of cell suicide. BioEssays, 1999, 21, 84-88.	2.5	103
259	Gone but not forgotten. Nature, 2000, 405, 28-29.	27.8	103
260	Manipulation of apoptosis in the host–parasite interaction. Trends in Parasitology, 2004, 20, 280-287.	3.3	103
261	Non-apoptotic role of BID in inflammation and innate immunity. Nature, 2011, 474, 96-99.	27.8	103
262	Overview: apoptotic signaling pathways in the immune system. Immunological Reviews, 2003, 193, 5-9.	6.0	102
263	p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death and Differentiation, 2003, 10, 451-460.	11.2	101
264	Mitochondrial functions during cell death, a complex (I–V) dilemma. Cell Death and Differentiation, 2003, 10, 488-492.	11.2	101
265	The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nature Immunology, 2011, 12, 1010-1016.	14.5	101
266	Events in Apoptosis. Journal of Biological Chemistry, 1996, 271, 16260-16262.	3.4	99
267	Crashing the computer: apoptosis vs. necroptosis in neuroinflammation. Cell Death and Differentiation, 2019, 26, 41-52.	11.2	97
268	The killer and the executioner: how apoptosis controls malignancy. Current Opinion in Immunology, 1995, 7, 694-703.	5.5	95
269	CELL DEATH AND IMMUNE PRIVILEGE. International Reviews of Immunology, 2002, 21, 153-172.	3.3	95
270	Systems Analysis of BCL2 Protein Family Interactions Establishes a Model to Predict Responses to Chemotherapy. Cancer Research, 2013, 73, 519-528.	0.9	94

#	Article	IF	CITATIONS
271	RIPK1-dependent apoptosis bypasses pathogen blockade of innate signaling to promote immune defense. Journal of Experimental Medicine, 2017, 214, 3171-3182.	8.5	94
272	PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle, 2009, 8, 2692-2696.	2.6	93
273	Disruption of the M80-Fe ligation stimulates the translocation of cytochrome <i>c</i> to the cytoplasm and nucleus in nonapoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2653-2658.	7.1	93
274	Autophagy Controls the Kinetics and Extent of Mitochondrial Apoptosis by Regulating PUMA Levels. Cell Reports, 2014, 7, 45-52.	6.4	93
275	Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis and Rheumatism, 1999, 42, 1088-1092.	6.7	91
276	Mouse Genome Engineering via CRISPR-Cas9 for Study of Immune Function. Immunity, 2015, 42, 18-27.	14.3	91
277	Aspirin Induces Apoptosis through Release of Cytochrome c from Mitochondria. Neoplasia, 2000, 2, 505-513.	5.3	90
278	Fas ligand, death gene. Cell Death and Differentiation, 1999, 6, 1174-1181.	11.2	87
279	Armed response: how dying cells influence Tâ€cell functions. Immunological Reviews, 2011, 241, 77-88.	6.0	87
280	Cytoplasmic p53: Bax and Forward. Cell Cycle, 2004, 3, 427-429.	2.6	86
281	RIPK3 Activation Leads to Cytokine Synthesis that Continues after Loss of Cell Membrane Integrity. Cell Reports, 2019, 28, 2275-2287.e5.	6.4	85
282	Saying the â€~S' word in public. Trends in Immunology, 1993, 14, 523-525.	7.5	84
283	Apoptosis as a goal of cancer therapy. Current Opinion in Oncology, 1994, 6, 616-621.	2.4	84
284	Pin1-Induced Proline Isomerization in Cytosolic p53 Mediates BAX Activation and Apoptosis. Molecular Cell, 2015, 59, 677-684.	9.7	84
285	Analysis of the p53 tumor suppressor gene in rheumatoid arthritis synovial fibroblasts. Arthritis and Rheumatism, 1999, 42, 1594-1600.	6.7	83
286	Endoplasmic reticulum protein Bl-1 regulates Ca ²⁺ -mediated bioenergetics to promote autophagy. Genes and Development, 2012, 26, 1041-1054.	5.9	83
287	Homeostatic Control of Innate Lung Inflammation by Vici Syndrome Gene Epg5 and Additional Autophagy Genes Promotes Influenza Pathogenesis. Cell Host and Microbe, 2016, 19, 102-113.	11.0	83
288	Apoptotic Cells Induce Tolerance by Generating Helpless CD8+ T Cells That Produce TRAIL. Journal of Immunology, 2007, 178, 2679-2687.	0.8	81

#	Article	IF	CITATIONS
289	Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis. EMBO Journal, 2012, 31, 2615-2628.	7.8	81
290	Immunoregulatory circuits which modulate responsiveness to suppressor cell signals: characterization of an effector cell in the contrasuppressor circuit. European Journal of Immunology, 1981, 11, 973-980.	2.9	80
291	Minimal BH3 Peptides Promote Cell Death by Antagonizing Anti-apoptotic Proteins. Journal of Biological Chemistry, 2003, 278, 19426-19435.	3.4	80
292	Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget, 2014, 5, 4180-4194.	1.8	80
293	Detection of Apoptosis by Annexin V Labeling. Methods in Enzymology, 2000, 322, 15-18.	1.0	78
294	The neoepitope landscape in pediatric cancers. Genome Medicine, 2017, 9, 78.	8.2	77
295	A Genetic Herd-Immunity Model for the Maintenance of MHC Polymorphism. Immunological Reviews, 1995, 143, 263-292.	6.0	75
296	Bcl-xL does not inhibit the function of Apaf-1. Cell Death and Differentiation, 2000, 7, 402-407.	11.2	73
297	Expression of Fas Ligand in Activated T Cells Is Regulated by c-Myc. Journal of Biological Chemistry, 2000, 275, 9767-9772.	3.4	73
298	The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Nature Structural and Molecular Biology, 2014, 21, 535-543.	8.2	73
299	p53's believe it or not: lessons on transcription-independent death. Journal of Clinical Immunology, 2003, 23, 355-361.	3.8	72
300	ZBP1/DAI Drives RIPK3-Mediated Cell Death Induced by IFNs in the Absence of RIPK1. Journal of Immunology, 2019, 203, 1348-1355.	0.8	72
301	The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy, 2018, 14, 796-811.	9.1	71
302	<i>Listeria monocytogenes</i> triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E210-E217.	7.1	70
303	Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function. Immunity, 2016, 44, 88-102.	14.3	69
304	Caspase-8-Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis. Immunity, 2020, 52, 994-1006.e8.	14.3	69
305	Regulation of FasL by NF-κB and AP-1 in Fas-dependent Thymineless Death of Human Colon Carcinoma Cells. Journal of Biological Chemistry, 2000, 275, 10023-10029.	3.4	68
306	The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nature Communications, 2016, 7, 11869.	12.8	68

#	Article	IF	CITATIONS
307	A BH3 Mimetic for Killing Cancer Cells. Cell, 2016, 165, 1560.	28.9	68
308	Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Molecular Psychiatry, 2017, 22, 1313-1326.	7.9	68
309	Biological events and molecular signaling following MLKL activation during necroptosis. Cell Cycle, 2017, 16, 1748-1760.	2.6	68
310	Apaf-1 and caspase-9 do not act as tumor suppressors in myc-induced lymphomagenesis or mouse embryo fibroblast transformation. Journal of Cell Biology, 2004, 164, 89-96.	5.2	67
311	To the edge of cell death and back. FEBS Journal, 2019, 286, 430-440.	4.7	67
312	Clucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells. Cell Death and Differentiation, 2010, 17, 1335-1344.	11.2	66
313	Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8 ⁺ T cell responses. Science Translational Medicine, 2019, 11, .	12.4	66
314	cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature, 2022, 607, 135-141.	27.8	65
315	Microenvironmental immunoregulation: possible role of contrasuppressor cells in maintaining immune responses in gut-associated lymphoid tissues Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 889-892.	7.1	64
316	Abrogation of oral tolerance by contrasuppressor T cells suggests the presence of regulatory T-cell networks in the mucosal immune system. Nature, 1986, 320, 451-454.	27.8	64
317	Measuring apoptosis at the single cell level. Methods, 2008, 44, 222-228.	3.8	64
318	Histoincompatibility in vertebrates: The relict hypothesis. Developmental and Comparative Immunology, 1985, 9, 191-201.	2.3	63
319	Death deceiver. Nature, 1998, 396, 629-630.	27.8	63
320	Egr Family Members Regulate Nonlymphoid Expression of Fas Ligand, TRAIL, and Tumor Necrosis Factor during Immune Responses. Molecular and Cellular Biology, 2003, 23, 7638-7647.	2.3	63
321	Genetic deletion of caspase-2 accelerates MMTV/c-neu-driven mammary carcinogenesis in mice. Cell Death and Differentiation, 2013, 20, 1174-1182.	11.2	63
322	Ripped to death. Trends in Cell Biology, 2011, 21, 630-637.	7.9	62
323	A Distinct Lung-Interstitium-Resident Memory CD8 + T Cell Subset Confers Enhanced Protection to Lower Respiratory Tract Infection. Cell Reports, 2016, 16, 1800-1809.	6.4	62
324	Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. Science Advances, 2020, 6, eabb9036.	10.3	62

#	Article	IF	CITATIONS
325	Trauma and the immune response. Trends in Immunology, 1988, 9, 253-255.	7.5	60
326	Caspase-7 deficiency protects from endotoxin-induced lymphocyte apoptosis and improves survival. Blood, 2009, 113, 2742-2745.	1.4	60
327	Necroptosis restricts influenza A virus as a stand-alone cell death mechanism. Journal of Experimental Medicine, 2020, 217, .	8.5	60
328	The Relationship between Metabolism and the Autophagy Machinery during the Innate Immune Response. Cell Metabolism, 2013, 17, 895-900.	16.2	58
329	NF-κB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proceedings of the United States of America, 2010, 107, 18061-18066.	7.1	57
330	Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene, 2017, 36, 2704-2714.	5.9	57
331	Just So Stories about the Evolution of Apoptosis. Current Biology, 2016, 26, R620-R627.	3.9	56
332	Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation from Latency by Preventing Virus-Induced Systemic Inflammation. Cell Host and Microbe, 2016, 19, 91-101.	11.0	56
333	Isotype-specific immunoregulation. Evidence for a distinct subset of T contrasuppressor cells for IgA responses in murine Peyer's patches Journal of Experimental Medicine, 1986, 164, 501-516.	8.5	55
334	Promotion and Inhibition of Activation-Induced Apoptosis in T-Cell Hybridomas by Oncogenes and Related Signals. Immunological Reviews, 1994, 142, 321-342.	6.0	55
335	Ordered progression of stage-specific miRNA profiles in the mouse B2 B-cell lineage. Blood, 2011, 117, 5340-5349.	1.4	55
336	Viral suppressors of the RIG-I-mediated interferon response are pre-packaged in influenza virions. Nature Communications, 2014, 5, 5645.	12.8	55
337	Highly Conserved Caspase and Bcl-2 Homologues from the Sea Anemone Aiptasia pallida: Lower Metazoans as Models for the Study of Apoptosis Evolution. Journal of Molecular Evolution, 2006, 63, 95-107.	1.8	54
338	Cancer Cells Employ Nuclear Caspase-8 to Overcome the p53-Dependent G2/M Checkpoint through Cleavage of USP28. Molecular Cell, 2020, 77, 970-984.e7.	9.7	54
339	Apoptosis and Sphingomyelin Hydrolysis. Journal of Cell Biology, 2000, 150, F5-F8.	5.2	53
340	Assays for Cytochrome c Release from Mitochondria during Apoptosis. Methods in Enzymology, 2000, 322, 235-242.	1.0	53
341	Metalloproteinase Shedding of Fas Ligand Regulates β-Amyloid Neurotoxicity. Current Biology, 2002, 12, 1595-1600.	3.9	53
342	Mito-protective autophagy is impaired in erythroid cells of aged mtDNA-mutator mice. Blood, 2015, 125, 162-174.	1.4	53

#	Article	IF	CITATIONS
343	Mito-priming as a method to engineer Bcl-2 addiction. Nature Communications, 2016, 7, 10538.	12.8	53
344	Role of contrasuppression in the adoptive transfer of immunity Journal of Experimental Medicine, 1983, 158, 982-987.	8.5	52
345	p34cdc2 and apoptosis. Science, 1995, 269, 106-107.	12.6	52
346	Role of Bcl-2 family members in immunity and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1644, 179-188.	4.1	52
347	Regulation of arthritis by p53: Critical role of adaptive immunity. Arthritis and Rheumatism, 2005, 52, 1876-1884.	6.7	52
348	Functional dissociation of ΔÎ m and cytochrome c release defines the contribution of mitochondria upstream of caspase activation during granzyme B-induced apoptosis. Cell Death and Differentiation, 2006, 13, 607-618.	11.2	52
349	Functional Myc-Max heterodimer is required for activation-induced apoptosis in T cell hybridomas Journal of Experimental Medicine, 1994, 180, 2413-2418.	8.5	50
350	HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood, 2005, 106, 2059-2068.	1.4	50
351	Knockdown of Actin and Caspase Gene Expression by RNA Interference in the Symbiotic Anemone <i>Aiptasia pallida</i> . Biological Bulletin, 2007, 212, 250-258.	1.8	50
352	SnapShot: Mitochondrial Quality Control. Cell, 2011, 147, 950-950.e1.	28.9	50
353	Phenytoin inhibits necroptosis. Cell Death and Disease, 2018, 9, 359.	6.3	50
354	Mitochondria and apoptosis: HQ or high-security prison?. Journal of Clinical Immunology, 1999, 19, 378-387.	3.8	49
355	Synergistic action of protein kinase C Î, and calcineurin is sufficient for Fas ligand expression and induction of a crmA-sensitive apoptosis pathway in Jurkat T cells. European Journal of Immunology, 1999, 29, 3549-3561.	2.9	49
356	Stabbed in the BAX. Nature, 2008, 455, 1047-1049.	27.8	49
357	Eating for good health: Linking autophagy and phagocytosis in host defense. Autophagy, 2008, 4, 607-611.	9.1	49
358	Autophagy and phagocytosis converge for better vision. Autophagy, 2014, 10, 165-167.	9.1	49
359	Death and NF-κB in T Cell Activation: Life at the Edge. Molecular Cell, 2003, 11, 551-552.	9.7	48
360	The pantheon of the fallen: why are there so many forms of cell death?. Trends in Cell Biology, 2012, 22, 555-556.	7.9	48

#	Article	IF	CITATIONS
361	Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity. Autophagy, 2014, 10, 2269-2278.	9.1	48
362	APOPTOSIS: A Myc-Induced Apoptosis Pathway Surfaces. Science, 1997, 278, 1246-1247.	12.6	46
363	Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: Characterization of the apoptotic death. Cell Death and Differentiation, 1997, 4, 95-104.	11.2	46
364	Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. Advances in Experimental Medicine and Biology, 2016, 930, 1-23.	1.6	46
365	Specific inhibition of cell-surface T-cell receptor expression by antisense oligodeoxynucleotides and its effect on the production of an antigen-specific regulatory T-cell factor Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3758-3762.	7.1	45
366	p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Research and Therapy, 2005, 7, R12.	3.5	45
367	The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiological Reviews, 2022, 102, 411-454.	28.8	45
368	Modification of Phosphatidylinositol 3-Kinase SH2 Domain Binding Properties by Abl- or Lck-mediated Tyrosine Phosphorylation at Tyr-688. Journal of Biological Chemistry, 1998, 273, 3994-4000.	3.4	44
369	A â€~non-canonical' DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Current Biology, 2000, 10, 1205-1208.	3.9	44
370	A Single Cell Analysis of Apoptosis: Ordering the Apoptotic Phenotype. Annals of the New York Academy of Sciences, 2000, 926, 132-141.	3.8	44
371	A burn induced Ly-2 suppressor T cell lowers resistance to bacterial infection. Journal of Surgical Research, 1985, 38, 606-612.	1.6	43
372	Apoptosis therapy: driving cancers down the road to ruin. Nature Medicine, 2013, 19, 131-133.	30.7	43
373	The regulation of apoptotic cell death. Brazilian Journal of Medical and Biological Research, 1999, 32, 1053-1061.	1.5	42
374	Targeting Histone Demethylases in MYC-Driven Neuroblastomas with Ciclopirox. Cancer Research, 2017, 77, 4626-4638.	0.9	42
375	Regulation of apoptosis by an intrinsically disordered region of Bcl-xL. Nature Chemical Biology, 2018, 14, 458-465.	8.0	42
376	Dynamic regulation of FoxP3 expression controls the balance between CD4 ⁺ T cell activation and cell death. European Journal of Immunology, 2005, 35, 3424-3432.	2.9	41
377	Bcr-Abl-mediated resistance to apoptosis is independent of constant tyrosine-kinase activity. Cell Death and Differentiation, 2003, 10, 592-598.	11.2	40
378	Cancer and Apoptosis: Who Is Built to Last?. Cancer Cell, 2017, 31, 2-4.	16.8	40

#	Article	IF	CITATIONS
379	Chapter 16 The (Holey) study of mitochondria in apoptosis. Methods in Cell Biology, 2001, 66, 365-391.	1.1	39
380	Apoptosis: Letting Slip The Dogs Of War. Current Biology, 2002, 12, R177-R179.	3.9	39
381	Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote <i>Yersinia</i> -Induced Apoptosis. Journal of Immunology, 2016, 197, 4110-4117.	0.8	39
382	Disrupting the CH1 Domain Structure in the Acetyltransferases CBP and p300 Results in Lean Mice with Increased Metabolic Control. Cell Metabolism, 2011, 14, 219-230.	16.2	38
383	Genetically defining the mechanism of Puma- and Bim-induced apoptosis. Cell Death and Differentiation, 2012, 19, 642-649.	11.2	38
384	Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFUÂtumour suppressor. Nature Cell Biology, 2017, 19, 1226-1236.	10.3	38
385	Direct Activation of Human MLKL by a Select Repertoire of Inositol Phosphate Metabolites. Cell Chemical Biology, 2019, 26, 863-877.e7.	5.2	38
386	Death fold domain interaction in apoptosis. Cell Death and Differentiation, 2003, 10, 10-12.	11.2	37
387	Analysis of DNA Fragmentation Using Agarose Gel Electrophoresis. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4429.	0.3	37
388	CRISPR-Cas9–Mediated Modification of the NOD Mouse Genome With <i>Ptpn22R619W</i> Mutation Increases Autoimmune Diabetes. Diabetes, 2016, 65, 2134-2138.	0.6	37
389	Immunoregulatory circuits which modulate responsiveness to suppressor cell signals: contrasuppressor cells can convert anin vivo tolerogenic signal into an immunogenic one. European Journal of Immunology, 1981, 11, 980-983.	2.9	36
390	Accumulation and Activation-Induced Release of Preformed Fas (CD95) Ligand During the Pathogenesis of Experimental Graft-Versus-Host Disease. Journal of Immunology, 2001, 167, 2936-2941.	0.8	36
391	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 325-339.	9.7	35
392	Confocal restricted-height imaging of suspension cells (CRISC) in a PDMS microdevice during apoptosis. Lab on A Chip, 2005, 5, 628.	6.0	34
393	Blocking granule-mediated death by primary human NK cells requires both protection of mitochondria and inhibition of caspase activity. Cell Death and Differentiation, 2008, 15, 708-717.	11.2	34
394	Fas Bim Boom!. Immunity, 2008, 28, 141-143.	14.3	34
395	MK-STYX, a Catalytically Inactive Phosphatase Regulating Mitochondrially Dependent Apoptosis. Molecular and Cellular Biology, 2011, 31, 1357-1368.	2.3	34
396	Contrasuppression in the mouse. Trends in Immunology, 1986, 7, 81-86.	7.5	33

#	Article	IF	CITATIONS
397	DNA Fragmentation Induced by Cytotoxic T Lymphocytes Can Result in Target Cell Death. Experimental Cell Research, 1993, 206, 302-310.	2.6	33
398	Listeria monocytogenes upregulates mitochondrial calcium signalling to inhibit LC3-associated phagocytosis as a survival strategy. Nature Microbiology, 2021, 6, 366-379.	13.3	33
399	Ten years of publication in cell death. Cell Death and Differentiation, 2004, 11, 2-3.	11.2	32
400	The End and After: How Dying Cells Impact the Living Organism. Immunity, 2011, 35, 441-444.	14.3	30
401	Mostly dead. Nature, 2001, 412, 133-135.	27.8	29
402	T cell metabolism and the immune response. Seminars in Immunology, 2012, 24, 399-404.	5.6	29
403	T cells are just dying to accept grafts. Nature Medicine, 1999, 5, 1231-1232.	30.7	28
404	Fas-Ligand and Immune Privilege: The Eyes Have It. Cell Death and Differentiation, 2001, 8, 771-772.	11.2	28
405	Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biology, 2019, 17, e3000402.	5.6	28
406	p53-dependent radiation-induced crypt intestinal epithelial cells apoptosis is mediated in part through TNF-TNFR1 system. Oncogene, 2001, 20, 812-818.	5.9	27
407	The Cul4A–DDB1 E3 ubiquitin ligase complex represses p73 transcriptional activity. Oncogene, 2013, 32, 4721-4726.	5.9	27
408	Autospecific γδthymocytes that escape negative selection find sanctuary in the intestine. Journal of Clinical Investigation, 1999, 104, 1297-1305.	8.2	27
409	Regulation of apoptosis by oncogenes. , 1996, 60, 33-38.		26
410	Role of CD95-activated caspase-1 processing of IL-1β in TCR-mediated proliferation of HIV-infected CD4+ T cells. European Journal of Immunology, 2001, 31, 3513-3524.	2.9	26
411	Regulation of Activation-induced Fas (CD95/Apo-1) Ligand Expression in T Cells by the Cyclin B1/Cdk1 Complex. Journal of Biological Chemistry, 2004, 279, 37334-37342.	3.4	26
412	The Death Receptor Pathway of Apoptosis. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041053.	5.5	26
413	Autoreactivity and self-tolerance in an invertebrate. Nature, 1985, 313, 400-402.	27.8	25
414	Nonlymphoid Fas ligand in peptide-induced peripheral lymphocyte deletion. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16174-16179.	7.1	25

Douglas R Green

#	Article	IF	CITATIONS
415	Preferential control of induced regulatory T cell homeostasis via a Bim/Bcl-2 axis. Cell Death and Disease, 2012, 3, e270-e270.	6.3	25
416	The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biology Reports, 2012, 4, 9.	4.0	25
417	Measuring Apoptosis: Caspase Inhibitors and Activity Assays. Cold Spring Harbor Protocols, 2014, 2014, pdb.top070359.	0.3	25
418	Bcr – Abl-mediated resistance to apoptosis is independent of PI 3-kinase activity. Cell Death and Differentiation, 1997, 4, 548-554.	11.2	24
419	Innate Immune Recognition of mtDNA—An Undercover Signal?. Cell Metabolism, 2015, 21, 793-794.	16.2	24
420	Critical role of caspase-8-mediated IL-1 signaling in promoting Th2 responses during asthma pathogenesis. Mucosal Immunology, 2017, 10, 128-138.	6.0	24
421	The suicide in the thymus, a twisted trail. Nature Immunology, 2003, 4, 207-208.	14.5	23
422	Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathways. Journal of Immunology, 2011, 187, 4416-4420.	0.8	23
423	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	27.8	23
424	Developmental checkpoints guarded by regulated necrosis. Cellular and Molecular Life Sciences, 2016, 73, 2125-2136.	5.4	23
425	Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy. , 2021, 9, e000832.		23
426	Caspases and Their Substrates. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041012.	5.5	23
427	Tumor Necrosis Factor α Up-regulates Non-lymphoid Fas-ligand following Superantigen-induced Peripheral Lymphocyte Activation. Journal of Biological Chemistry, 2002, 277, 42380-42385.	3.4	22
428	Presence of a Transcriptionally Active Glucocorticoid Receptor \hat{I}_{\pm} in Lens Epithelial Cells. , 2003, 44, 5269.		22
429	Addendum: Defective Dock2 expression in a subset of ASC-deficient mouse lines. Nature Immunology, 2012, 13, 701-702.	14.5	22
430	Lymphocyte apoptosis: refining the paths to perdition. Current Opinion in Hematology, 2002, 9, 43-49.	2.5	21
431	Nab2 regulates secondary CD8+ T-cell responses through control of TRAIL expression. Blood, 2012, 119, 798-804.	1.4	21
432	IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Nature Communications, 2015, 6, 7988.	12.8	21

#	Article	IF	CITATIONS
433	Reinvigorating NIH Grant Peer Review. Immunity, 2020, 52, 1-3.	14.3	20
434	Bcr-Abl Exerts Its Antiapoptotic Effect Against Diverse Apoptotic Stimuli Through Blockage of Mitochondrial Release of Cytochrome C and Activation of Caspase-3. Blood, 1998, 91, 1700-1705.	1.4	20
435	Immunoregulatory activity of the T-cell receptor alpha chain demonstrated by retroviral gene transfer Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8475-8479.	7.1	19
436	Calpain Functions in a Caspase-Independent Manner to Promote Apoptosis-Like Events During Platelet Activation. Blood, 1999, 94, 1683-1692.	1.4	19
437	Contrasuppression: The Second Law of Thymodynamics, Revisited. Advances in Cancer Research, 1984, 42, 277-335.	5.0	18
438	Surviving the Cytochrome Seas. Neuron, 1998, 21, 653-655.	8.1	18
439	Duration of CTL activation regulates IL-2 production required for autonomous clonal expansion. European Journal of Immunology, 2006, 36, 1707-1717.	2.9	18
440	Calcium and Energy: Making the Cake and Eating It too?. Cell, 2010, 142, 200-202.	28.9	18
441	Differential requirements for myeloid leukemia IFN-Î ³ conditioning determine graft-versus-leukemia resistance and sensitivity. Journal of Clinical Investigation, 2017, 127, 2765-2776.	8.2	18
442	The cell's dilemma, or the story of cell death: an entertainment in three acts. FEBS Journal, 2016, 283, 2568-2576.	4.7	17
443	Mitochondria, Apoptosis and Autoimmunity. , 2005, 9, 55-73.		16
444	Life, Death, BH3 Profiles, and the Salmon Mousse. Cancer Cell, 2007, 12, 97-99.	16.8	16
445	Interleukin-2 rescues helpless effector CD8+ T cells by diminishing the susceptibility to TRAIL mediated death. Immunology Letters, 2011, 139, 25-32.	2.5	16
446	An Element of Life. Cell, 2018, 172, 389-390.	28.9	16
447	T Cell-Derived Antigen Binding Molecules (TABM): Molecular and Functional Properties. International Reviews of Immunology, 1988, 3, 205-228.	3.3	15
448	Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. Cell Reports Physical Science, 2020, 1, 100270.	5.6	15
449	T cell development: Some cells get all the breaks. Nature Immunology, 2000, 1, 15-17.	14.5	14
450	Publications in Cell Death: the golden age. Cell Death and Differentiation, 2001, 8, 1-3.	11.2	14

#	Article	IF	CITATIONS
451	Granzyme A: the road less traveled. Nature Immunology, 2003, 4, 106-108.	14.5	14
452	Caspase-1 inflammasomes: choosing between death and taxis. Cell Death and Differentiation, 2007, 14, 1559-1560.	11.2	14
453	Characterization of MLKL-mediated Plasma Membrane Rupture in Necroptosis. Journal of Visualized Experiments, 2018, , .	0.3	14
454	Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. Science Advances, 2021, 7, eabe5469.	10.3	14
455	Localization of a TORC1-eIF4F translation complex during CD8+ TÂcell activation drives divergent cell fate. Molecular Cell, 2022, 82, 2401-2414.e9.	9.7	14
456	Ca2+-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death and Differentiation, 2022, 29, 1318-1334.	11.2	14
457	The Role of p53 and Fas in a Model of Acute Murine Graft-versus-Host Disease. Journal of Immunology, 2005, 174, 1291-1297.	0.8	13
458	Distinct roles of cytolytic effector molecules for antigenâ€restricted killing by CTL in vivo. Immunology and Cell Biology, 2010, 88, 761-765.	2.3	13
459	Stress in Biomedical Research: Six Impossible Things. Molecular Cell, 2010, 40, 176-178.	9.7	13
460	Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.	4.7	13
461	HYPERIMMUNITY AND THE DECISION TO BE INTOLERANT. Annals of the New York Academy of Sciences, 1982, 392, 318-329.	3.8	12
462	Contrasuppression in the mucosal immune system. Immunologic Research, 1988, 7, 67-81.	2.9	12
463	A phage display system for detection of T cell receptor-antigen interactions. Molecular Immunology, 1995, 32, 1387-1397.	2.2	12
464	The use of a monoclonal I-J-specific antibody to distinguish cells in the feedback suppression circuit from those in the contrasuppressor circuit. Immunogenetics, 1982, 16, 551-558.	2.4	11
465	Sensitivity of S49.1 cells to anti-CD95 (Fas/Apo-1)-induced apoptosis: effects of CD95, bcl-2 or bcl-x transduction. Cell Death and Differentiation, 1998, 5, 200-205.	11.2	11
466	Cloak and dagger in the avoidance of immune surveillance. Current Opinion in Genetics and Development, 2000, 10, 114-119.	3.3	11
467	Cell Competition: Pirates on the Tangled Bank. Cell Stem Cell, 2010, 6, 287-288.	11.1	11
468	TRAIL-induced variation of cell signaling states provides nonheritable resistance to apoptosis. Life Science Alliance, 2019, 2, e201900554.	2.8	11

#	Article	IF	CITATIONS
469	DUB-le Trouble for Cell Survival. Cancer Cell, 2010, 17, 117-119.	16.8	10
470	Real time with Caspase-2. Cell Cycle, 2010, 9, 12-13.	2.6	10
471	The proline rich domain of p53 is dispensable for MGMT-dependent DNA repair and cell survival following alkylation damage. Cell Death and Differentiation, 2017, 24, 1925-1936.	11.2	10
472	Cell Death in Development Cold Spring Harbor Perspectives in Biology, 2022, 14, .	5.5	10
473	SUPPRESSION AND CONTRASUPPRESSION IN THE REGULATION OF GUT-ASSOCIATED IMMUNE RESPONSES. Annals of the New York Academy of Sciences, 1983, 409, 284-291.	3.8	9
474	Apoptosis induced by Actinomycin D, Camptothecin or Aphidicolin can occur in all phases of the cell cycle. Biochemical Society Transactions, 1992, 20, 84S-84S.	3.4	9
475	Characterization of Apt- cell lines exhibiting cross-resistance to glucocorticoid- and Fas-mediated apoptosis. Cell Death and Differentiation, 1999, 6, 796-804.	11.2	9
476	Murder by proxy. Nature Immunology, 2000, 1, 461-462.	14.5	9
477	Introduction: apoptosis in the development and function of the immune system. Seminars in Immunology, 2003, 15, 121-123.	5.6	9
478	Cell death and the immune system: getting to how and why. Immunological Reviews, 2017, 277, 4-8.	6.0	9
479	Generation and Use of Chimeric RIP Kinase Molecules to Study Necroptosis. Methods in Molecular Biology, 2018, 1857, 71-83.	0.9	9
480	The evolution of a mechanism of cell suicide. BioEssays, 1999, 21, 84-88.	2.5	9
481	Immunoregulatory activity of a T-cell receptor alpha chain demonstrated by in vitro transcription and translation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 3004-3008.	7.1	8
482	Harm's Way. Neuron, 1999, 22, 416-417.	8.1	8
483	ICE Heats Up. Cell Death and Differentiation, 2001, 8, 549-550.	11.2	8
484	Cell survival and proliferation in Drosophila S2 cells following apoptotic stress in the absence of the APAF-1 homolog, ARK, or downstream caspases. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 497-507.	4.9	8
485	A wolf in wolf's clothing. Nature, 2010, 465, 433-433.	27.8	8
486	Autopsy of a cell. Leukemia, 2014, 28, 1341-1343.	7.2	8

#	Article	IF	CITATIONS
487	Polarization and asymmetry in T cell metabolism. Seminars in Immunology, 2016, 28, 525-534.	5.6	8
488	Polyamines and Aging: A CLEAR Connection?. Molecular Cell, 2019, 76, 5-7.	9.7	8
489	An approach to the unification of suppressor T cell circuits: A simplified assay for the induction of suppression by T cell-derived, antigen-binding molecules (T-ABM). Cellular Immunology, 1989, 118, 30-40.	3.0	7
490	Preparation of Cytosolic Extracts and Activation of Caspases by Cytochrome <i>c</i> . Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080275.	0.3	7
491	SARS-CoV2 vaccines: Slow is fast. Science Advances, 2020, 6, eabc7428.	10.3	7
492	Mucosal Homeostasis: Role of Interleukins, Isotype-specific factors and Contrasuppression in the IgA response. Immunological Investigations, 1989, 18, 77-89.	2.0	6
493	Antisense Oligodeoxynucleotides as Probes of T-Lymphocyte Gene Functiona. Annals of the New York Academy of Sciences, 1992, 660, 193-203.	3.8	6
494	Pseudokiller, Qu'est-ce que C'est?. Immunity, 2013, 39, 421-422.	14.3	6
495	Another face of <scp>RIPK</scp> 1. EMBO Reports, 2015, 16, 674-675.	4.5	6
496	Immiscible immunity. Science, 2020, 370, 294-295.	12.6	6
497	Multiple Autonomous Cell Death Suppression Strategies Ensure Cytomegalovirus Fitness. Viruses, 2021, 13, 1707.	3.3	6
498	Apoptosis During HIV Infection. Advances in Experimental Medicine and Biology, 1995, , 129-138.	1.6	6
499	Beyond the Immune System: The Immunotrophic Role of T Cells in Organ Generation and Regeneration. , 1986, , 1100-1112.		6
500	Live to Dead Cell Imaging. Methods in Molecular Biology, 2009, 559, 33-48.	0.9	5
501	A heavyweight knocked out. Nature, 2011, 479, 48-50.	27.8	5
502	Sweet Nothings: Sensing of Sugar Metabolites Controls T Cell Function. Cell Metabolism, 2013, 18, 7-8.	16.2	5
503	Detection of Caspase Activity Using Antibody-Based Techniques. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080291.	0.3	5
504	Mitochondrial quality control: Just walk away. Cell Metabolism, 2021, 33, 1069-1071.	16.2	5

#	Article	IF	CITATIONS
505	Killers or Clean-Up Crew. , 1999, , 157-174.		5
506	Life support: the α4 phosphatase subunit in cell survival and apoptosis. Trends in Cell Biology, 2005, 15, 285-287.	7.9	4
507	Response to Callus et al on â€~Cytoplasmic p53 is not required for PUMA-induced apoptosis'. Cell Death and Differentiation, 2008, 15, 215-216.	11.2	4
508	A Survivor Hits the Breaks. Molecular Cell, 2008, 29, 411-412.	9.7	4
509	Yeretssian et al. reply. Nature, 2012, 488, E6-E8.	27.8	4
510	Noncanonical Autophagy Promotes the Visual Cycle. Cell, 2013, 155, 725-726.	28.9	4
511	Assaying Caspase Activity In Vitro. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080283-pdb.prot080283.	0.3	4
512	Loss of receptor interacting protein kinases 3 and caspaseâ€8 augments intrinsic apoptosis in tubular epithelial cell and promote kidney ischaemiaâ€reperfusion injury. Nephrology, 2019, 24, 661-669.	1.6	4
513	Cytotoxic Lymphocyte Killing Enters the Ice Age. Advances in Experimental Medicine and Biology, 1996, 406, 29-37.	1.6	4
514	Class I MHC mediates programmed cell death in a Fas-independent manner. Transplantation Proceedings, 1997, 29, 1101.	0.6	3
515	Apoptosis Signaling: A Means to an End. , 2010, , 2535-2543.		3
516	Cell survival in tough times: The mitochondrial recovery plan. Cell Cycle, 2010, 9, 4254-4255.	2.6	3
517	Endoplasmic Reticulum Stress Response in Cell Death and Cell Survival. , 0, , 51-62.		3
518	Cell Death in the Inner Ear. , 0, , 182-193.		3
519	Cell Death in the Skin. , 0, , 323-332.		3
520	Death receptors and mitochondria: Life depends on the liver. Hepatology, 2011, 54, 13-15.	7.3	3
521	Apoptosis, Necrosis, and Autophagy. , 2015, , 209-228.e3.		3
522	Paradoxical Puma Prohibits Pyruvate Pumps to Prime Pathology. Cancer Cell, 2019, 35, 163-165.	16.8	3

#	Article	IF	CITATIONS
523	Mitochondria and apoptosis: a quick take on a long view. F1000 Biology Reports, 2009, 1, 17.	4.0	3
524	Heme Interaction with the Pyruvate Dehydrogenase Complex: A Novel Strategy to Promote Hypoxic Survival. FASEB Journal, 2019, 33, 652.12.	0.5	3
525	Rubicon-deficiency sensitizes mice to mixed lineage kinase domain-like (MLKL)-mediated kidney ischemia-reperfusion injury. Cell Death and Disease, 2022, 13, 236.	6.3	3
526	Unbiased and robust analysis of co-localization in super-resolution images. Statistical Methods in Medical Research, 2022, , 096228022210941.	1.5	3
527	Assessing Cytochrome-c Release from Mitochondria. , 2002, , 021-034.		2
528	Mitochondrial Mechanisms of Neural Cell Death in Cerebral Ischemia. , 2011, , 153-163.		2
529	Death Domain–Containing Receptors – Decisions between Suicide and Fire. , 0, , 23-36.		2
530	Identification of Active Caspases Using Affinity-Based Probes. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080309-pdb.prot080309.	0.3	2
531	Verification of a Putative Caspase Substrate. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080317.	0.3	2
532	RIPped for neuroinflammation. Cell Research, 2017, 27, 1081-1082.	12.0	2
533	Immunologic Repercussions of Cell Death. , 2017, , 418-448.e6.		2
534	Eating the Beast: Dietary Protein and Anticancer Immunity. Cell Metabolism, 2018, 27, 703-705.	16.2	2
535	Death by Retrograde Transport: Avoiding the Apoptosis Default. Cell Chemical Biology, 2019, 26, 1636-1638.	5.2	2
536	Generation of Casp8 Mice Using CRISPR-Cas9 Technology. STAR Protocols, 2020, 1, 100181.	1.2	2
537	MYC, FAS, Apoptosis, and Immune Tolerance. , 1994, , 213-222.		2
538	A Matter of Life and Death. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041004.	5.5	2
539	The role of contrasuppressor T cells in the adoptive transfer of contact sensitivity responses to picryl chloride. Immunologic Research, 1988, 7, 1-11.	2.9	1
540	Induction of contrasuppression is restricted by genes mapping to the Igh locus. Immunologic Research, 1988, 7, 82-92.	2.9	1

#	Article	IF	CITATIONS
541	Antigen-specific regulatory t-cell factors and the T-cell receptor. Research in Immunology, 1989, 140, 294-298.	0.9	1
542	P53 protects against the development of dysplasia in dextran sulfate induced cholitis. Gastroenterology, 1998, 114, A666.	1.3	1
543	Dying for acceptance: apoptosis in tolerance. Current Opinion in Organ Transplantation, 2002, 7, 2-6.	1.6	1
544	Apoptosis in the Kidney. , 0, , 240-249.		1
545	Analysis of Cell Death in Zebrafish. , 0, , 412-421.		1
546	Mitochondria and Cell Death. , 2011, , 37-43.		1
547	Cell Death in Response to Genotoxic Stress and DNA Damage. , 2011, , 74-87.		1
548	'Tit-for-tat' in cell biology. Nature Reviews Molecular Cell Biology, 2011, 12, 73-73.	37.0	1
549	Metabolism and immunity: The old and the new. Seminars in Immunology, 2012, 24, 383.	5.6	1
550	Metabolic Activation of CaMKII by Coenzyme A. Molecular Cell, 2013, 52, 468.	9.7	1
551	Inducible dimerization and inducible cleavage reveal a requirement for both processes in caspase-8 activation Journal of Biological Chemistry, 2014, 289, 6838.	3.4	1
552	C11ORF95-RELA FUSIONS DRIVE ONCOGENIC NF-KB SIGNALING IN EPENDYMOMA. Neuro-Oncology, 2014, 16, iii16-iii16.	1.2	1
553	Apostosis Signaling: A Means to an End. , 2003, , 431-439.		1
554	HIF1a–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Tregcells. Journal of Cell Biology, 2011, 194, i1-i1.	5.2	1
555	The DNA Damage Response Mediates Apoptosis and Tumor Suppression. , 2014, , 135-165.		1
556	Antigen-Specific Immunoregulatory Activity of a T Cell Receptor α Chain Generated by Expression PCR. International Archives of Allergy and Immunology, 1995, 107, 356-358.	2.1	0
557	Massive depletion of epithelial ^ĵ aî´T cells in acute, but not chronic, GVHD: A role for donor FasL. Gastroenterology, 1998, 114, A1067.	1.3	0
558	Acidic sphingomyelinase is involved in Fas-mediated cell death of the hepatocytes but not lymphocytes. Evidence for acidc sphingomyelinase dependent and independent pathways. Gastroenterology, 2000, 118, A962.	1.3	0

#	Article	IF	CITATIONS
559	Stress and the Control of Apoptosis. Scientific World Journal, The, 2001, 1, 47-47.	2.1	Ο
560	Apoptotic gene therapy in the interdigital web. Cell Death and Differentiation, 2005, 12, 410-410.	11.2	0
561	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 130, 385.	28.9	0
562	April Fish. Oncogene, 2009, 28, 1569-1569.	5.9	0
563	Matters of Life and Death in the Immune System. , 2009, , 423-442.		0
564	Cell Death in Spinal Cord Injury â \in " An Evolving Taxonomy with Therapeutic Promise. , 0, , 164-175.		0
565	Cell Death in the Olfactory System. , 0, , 194-200.		0
566	Apoptosis in the Physiology and Diseases of the Respiratory Tract. , 0, , 221-230.		0
567	Regulation of Cell Death in the Gastrointestinal Tract. , 0, , 231-239.		0
568	Physiologic and Pathological Cell Death in the Mammary Gland. , 0, , 250-272.		0
569	Apoptotic Signaling in Male Germ Cells. , 0, , 283-294.		0
570	Apoptotic Cell Death in Sepsis. , 0, , 363-371.		0
571	Programmed Cell Death in the Yeast Saccharomyces cerevisiae. , 0, , 389-396.		Ο
572	Therapeutic Targeting Apoptosis in Female Reproductive Biology. , 0, , 273-282.		0
573	Apoptotic Cell Death in Drosophila. , 0, , 407-411.		0
574	Host–Pathogen Interactions. , 0, , 372-388.		0
575	Human Caspases â \in " Apoptosis and Inflammation Signaling Proteases. , 0, , 1-10.		0

#	Article	IF	CITATIONS
577	Autophagy – The Liaison between the Lysosomal System and Cell Death. , 0, , 63-73.		Ο
578	Ceramide and Lipid Mediators in Apoptosis. , 0, , 88-105.		0
579	Cytotoxic Granules House Potent Proapoptotic Toxins Critical for Antiviral Responses and Immune Homeostasis. , 0, , 106-122.		0
580	Apoptosis and Cell Survival in the Immune System. , 0, , 333-349.		0
581	Cell Death Regulation in the Hematopoietic System. , 0, , 350-362.		0
582	Cell Death in Nervous System Development and Neurological Disease. , 0, , 123-134.		0
583	Role of Programmed Cell Death in Neurodegenerative Disease. , 0, , 135-144.		0
584	Implications of Nitrosative Stress-Induced Protein Misfolding in Neurodegeneration. , 0, , 145-152.		0
585	Apoptosis and Homeostasis in the Eye. , 0, , 176-181.		0
586	Contribution of Apoptosis to Physiologic Remodeling of the Endocrine Pancreas and Pathophysiology of Diabetes. , 0, , 201-220.		0
587	Cell Death in the Cardiovascular System. , 0, , 295-312.		0
588	Cell Death Regulation in Muscle. , 0, , 313-322.		0
589	Caenorhabditis elegans and Apoptosis. , 0, , 397-406.		0
590	Response to Comment on "Cutting Edge: Regulatory T Cells Do Not Mediate Suppression via Programmed Cell Death Pathwaysâ€: Journal of Immunology, 2012, 188, 5204-5205.	0.8	0
591	87. Cytokine, 2013, 63, 263-264.	3.2	0
592	Health and Fitness at the Single-Cell Level. Cancer Immunology Research, 2021, 9, 130-135.	3.4	0
593	Alternative careers at the autophagy factory. Trends in Cell Biology, 2021, 31, 613-615.	7.9	0
594	Abstract SY27-01: Cutting both ways: Why FADD, FLIP, and Caspase-8 are required for embryonic development. , 2012, , .		0

#	Article	IF	CITATIONS
595	Matters of Life and Death: Give and Take in the Bcl-2 Family. Blood, 2013, 122, SCI-40-SCI-40.	1.4	0
596	Murder and Suicide. , 1997, , 91-103.		0
597	Taking Out the Immune Response. , 1997, , 147-158.		0
598	Abstract IA30: How cells survive: Single cell analysis reveals properties of non-genetic apoptosis resistance , 2015, , .		0
599	A View from the Bridge: Antigenic Determinants in Immunoregulation. , 1983, , 387-394.		0
600	Dances with Cells. Critical Reviews in Immunology, 2020, 40, 355-366.	0.5	0
601	Carmine Melino. Annali Di Igiene: Medicina Preventiva E Di Comunita, 2017, 29, 382-383.	0.7	0