Diana Dias da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5904367/publications.pdf

Version: 2024-02-01

58 papers 8,058 citations

236925 25 h-index 54 g-index

75 all docs

75 docs citations

75 times ranked 7500 citing authors

#	Article	IF	CITATIONS
1	Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health, The, 2022, 7, e105-e125.	10.0	1,199
2	Burden of non-communicable diseases among adolescents aged 10–24 years in the EU, 1990–2019: a systematic analysis of the Global Burden of Diseases Study 2019. The Lancet Child and Adolescent Health, 2022, 6, 367-383.	5.6	48
3	Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins, 2022, 14, 278.	3.4	35
4	Long-term effects of lithium and lithium-microplastic mixtures on the model species Daphnia magna: Toxicological interactions and implications to †One Health'. Science of the Total Environment, 2022, 838, 155934.	8.0	14
5	Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 517-554.	6.1	45
6	The burden of injury in Central, Eastern, and Western European sub-region: a systematic analysis from the Global Burden of Disease 2019 Study. Archives of Public Health, 2022, 80, 142.	2.4	9
7	Adolescent transport and unintentional injuries: a systematic analysis using the Global Burden of Disease Study 2019. Lancet Public Health, The, 2022, 7, e657-e669.	10.0	34
8	Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020. Lancet, The, 2022, 400, 185-235.	13.7	161
9	Toxicity of pesticides widely applied on soybean cultivation: Synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicology in Vitro, 2022, 84, 105446.	2.4	11
10	Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models. Toxicology in Vitro, 2021, 70, 105046.	2.4	30
11	Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals, 2021, 14, 116.	3.8	13
12	Overview of Synthetic Cannabinoids ADB-FUBINACA and AMB-FUBINACA: Clinical, Analytical, and Forensic Implications. Pharmaceuticals, 2021, 14, 186.	3.8	16
13	From street to lab: in vitro hepatotoxicity of buphedrone, butylone and 3,4-DMMC. Archives of Toxicology, 2021, 95, 1443-1462.	4.2	6
14	Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine and Pharmacotherapy, 2021, 140, 111756.	5.6	11
15	Gas Chromatography Multiresidue Method for Enantiomeric Fraction Determination of Psychoactive Substances in Effluents and River Surface Waters. Chemosensors, 2021, 9, 224.	3.6	6
16	Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet, The, 2021, 398, 870-905.	13.7	229
17	Neurotoxicity of psychoactive substances: A mechanistic overview. Current Opinion in Toxicology, 2021, 28, 76-83.	5.0	4
18	4-Fluoromethamphetamine (4-FMA) induces in vitro hepatotoxicity mediated by CYP2E1, CYP2D6, and CYP3A4 metabolism. Toxicology, 2021, 463, 152988.	4.2	7

#	Article	IF	CITATIONS
19	Global, regional, and national mortality among young people aged 10–24 years, 1950–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2021, 398, 1593-1618.	13.7	92
20	Pharmacokinetics, pharmacodynamics, and toxicity of the new psychoactive substance 3,4-dimethylmethcathinone (3,4-DMMC). Forensic Toxicology, 2020, 38, 15-29.	2.4	6
21	Biodistribution and metabolic profile of 3,4-dimethylmethcathinone (3,4-DMMC) in Wistar rats through gas chromatography–mass spectrometry (GC–MS) analysis. Toxicology Letters, 2020, 320, 113-123.	0.8	6
22	Emerging club drugs: 5-(2-aminopropyl)benzofuran (5-APB) is more toxic than its isomer 6-(2-aminopropyl)benzofuran (6-APB) in hepatocyte cellular models. Archives of Toxicology, 2020, 94, 609-629.	4.2	11
23	Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacological Research, 2020, 162, 105237.	7.1	27
24	Global burden of 87 risk factors in 204 countries and territories, 1990â€"2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1223-1249.	13.7	3,928
25	Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1160-1203.	13.7	890
26	Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals, 2020, 13, 334.	3.8	45
27	Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. Injury Prevention, 2020, 26, i125-i153.	2.4	44
28	The Synthetic Cannabinoids THJ-2201 and 5F-PB22 Enhance In Vitro CB1 Receptor-Mediated Neuronal Differentiation at Biologically Relevant Concentrations. International Journal of Molecular Sciences, 2020, 21, 6277.	4.1	16
29	Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, The, 2020, 396, 1250-1284.	13.7	330
30	Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Injury Prevention, 2020, 26, i96-i114.	2.4	103
31	Drinking to death: Hyponatraemia induced by synthetic phenethylamines. Drug and Alcohol Dependence, 2020, 212, 108045.	3.2	12
32	Diet aid or aid to die: an update on 2,4-dinitrophenol (2,4-DNP) use as a weight-loss product. Archives of Toxicology, 2020, 94, 1071-1083.	4.2	15
33	Study of the intestinal uptake and permeability of gold nanoparticles using both <i>in vitro</i> and <i>in vivo</i> approaches. Nanotechnology, 2020, 31, 195102.	2.6	16
34	Pharmacokinetic and Pharmacodynamic Aspects of Peyote and Mescaline: Clinical and Forensic Repercussions. Current Molecular Pharmacology, 2019, 12, 184-194.	1.5	57
35	The new psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone) induces oxidative stress, apoptosis, and autophagy in primary rat hepatocytes at human-relevant concentrations. Archives of Toxicology, 2019, 93, 2617-2634.	4.2	21
36	A multiparametric study of gold nanoparticles cytotoxicity, internalization and permeability using an∢i>in vitro⟨ i>model of bloodâ€"brain barrier. Influence of size, shape and capping agent. Nanotoxicology, 2019, 13, 990-1004.	3.0	26

#	Article	IF	CITATIONS
37	<i>Benzo fur</i> y: A new trend in the drug misuse scene. Journal of Applied Toxicology, 2019, 39, 1083-1095.	2.8	15
38	The novel psychoactive substance 3-methylmethcathinone (3-MMC or metaphedrone): A review. Forensic Science International, 2019, 295, 54-63.	2.2	28
39	Quantification of Methadone and Main Metabolites in Nails. Journal of Analytical Toxicology, 2018, 42, 192-206.	2.8	12
40	Anticancer potential of semi-volatile compounds present in cork: Cytotoxic mixture effects in human colorectal adenocarcinoma cells. Toxicology Letters, 2018, 295, S273.	0.8	0
41	Ethanol addictively enhances the in vitro cardiotoxicity of cocaine through oxidative damage, energetic deregulation, and apoptosis. Archives of Toxicology, 2018, 92, 2311-2325.	4.2	18
42	Untangling the Intracellular Mechanisms Underlying Toxicity of Drugs of Abuse: A Review of the Detrimental Effects of New Psychoactive Substances (NPS). Open Access Journal of Toxicology, 2018, 3,	0.3	0
43	Insights on the relationship between structure vs. toxicological activity of antibacterial rhodamine-labelled 3-hydroxy-4-pyridinone iron(III) chelators in HepG2 cells. Interdisciplinary Toxicology, 2018, 11, 189-199.	1.0	2
44	In vitro hepatotoxicity of †Legal X': the combination of 1-benzylpiperazine (BZP) and 1-(m-trifluoromethylphenyl)piperazine (TFMPP) triggers oxidative stress, mitochondrial impairment and apoptosis. Archives of Toxicology, 2017, 91, 1413-1430.	4.2	20
45	Protective ability against oxidative stress of brewers' spent grain protein hydrolysates. Food Chemistry, 2017, 228, 602-609.	8.2	64
46	Impact of in Vitro Gastrointestinal Digestion and Transepithelial Transport on Antioxidant and ACE-Inhibitory Activities of Brewer's Spent Yeast Autolysate. Journal of Agricultural and Food Chemistry, 2016, 64, 7335-7341.	5.2	26
47	<i>In vitro</i> neurotoxicity evaluation of piperazine designer drugs in differentiated human neuroblastoma SHâ€6Y5Y cells. Journal of Applied Toxicology, 2016, 36, 121-130.	2.8	30
48	Neurotoxic mixture effects of amphetamines, alcohol, tobacco and caffeine in SHSY-5Y dopaminergic cells – The effect of temperature. Toxicology Letters, 2015, 238, S354.	0.8	0
49	Hepatotoxicity of piperazine designer drugs: Comparison of different in vitro models. Toxicology in Vitro, 2015, 29, 987-996.	2.4	37
50	Raising awareness of new psychoactive substances: chemical analysis and in vitro toxicity screening of †legal high' packages containing synthetic cathinones. Archives of Toxicology, 2015, 89, 757-771.	4.2	73
51	Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment. Toxicology Letters, 2014, 229, 178-189.	0.8	43
52	Combination effects of amphetamines under hyperthermia - the role played by oxidative stress. Journal of Applied Toxicology, 2014, 34, 637-650.	2.8	55
53	â€~Smart' but not safe: The potential hepatotoxicity of synthetic cathinones. Toxicology Letters, 2014, 229, S64.	0.8	0
54	Mixtures of 3,4-methylenedioxymethamphetamine (<i>ecstasy</i>) and its major human metabolites act additively to induce significant toxicity to liver cells when combined at low, non-cytotoxic concentrations. Journal of Applied Toxicology, 2014, 34, 618-627.	2.8	17

#	Article	IF	CITATIONS
55	An insight into the hepatocellular death induced by amphetamines, individually and in combination: the involvement of necrosis and apoptosis. Archives of Toxicology, 2013, 87, 2165-2185.	4.2	55
56	Low concentration mixtures of MDMA and its major human metabolites induce significant toxicity to liver cells, both at physiological and hyperthermic conditions. Toxicology Letters, 2013, 221, S153.	0.8	1
57	Cytotoxic effects of amphetamine mixtures in primary hepatocytes are severely aggravated under hyperthermic conditions. Toxicology in Vitro, 2013, 27, 1670-1678.	2.4	20
58	The risky cocktail: what combination effects can we expect between ecstasy and other amphetamines?. Archives of Toxicology, 2013, 87, 111-122.	4.2	19