List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/590421/publications.pdf Version: 2024-02-01

		30070	24982
139	12,515	54	109
papers	citations	h-index	g-index
139	139	139	12692
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Role of orally induced regulatory T cells in immunotherapy and tolerance. Cellular Immunology, 2021, 359, 104251.	3.0	48
2	Type I IFN Sensing by cDCs and CD4+ T Cell Help Are Both Requisite for Cross-Priming of AAV Capsid-Specific CD8+ T Cells. Molecular Therapy, 2020, 28, 758-770.	8.2	45
3	Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy, 2020, 28, 709-722.	8.2	382
4	T Lymphocytes Cash Their Value in Clinical Medicine. Trends in Molecular Medicine, 2020, 26, 800-802.	6.7	2
5	Role of Small Intestine and Gut Microbiome in Plant-Based Oral Tolerance for Hemophilia. Frontiers in Immunology, 2020, 11, 844.	4.8	19
6	SLAMF6 as a Regulator of Exhausted CD8+ T Cells in Cancer. Cancer Immunology Research, 2019, 7, 1485-1496.	3.4	34
7	TLR9-Activating CpG-B ODN but Not TLR7 Agonists Triggers Antibody Formation to Factor IX in Muscle Gene Transfer. Human Gene Therapy Methods, 2019, 30, 81-92.	2.1	22
8	The Checkpoint Regulator SLAMF3 Preferentially Prevents Expansion of Auto-Reactive B Cells Generated by Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 831.	4.8	4
9	Reprogrammed CD4+ T Cells That Express FoxP3+ Control Inhibitory Antibody Formation in Hemophilia A Mice. Frontiers in Immunology, 2019, 10, 274.	4.8	20
10	SLAMF6 in health and disease: Implications for therapeutic targeting. Clinical Immunology, 2019, 204, 3-13.	3.2	9
11	Regulatory T cells and TLR9 activation shape antibody formation to a secreted transgene product in AAV muscle gene transfer. Cellular Immunology, 2019, 342, 103682.	3.0	29
12	SLAMF1 is required for TLR4-mediated TRAM-TRIF–dependent signaling in human macrophages. Journal of Cell Biology, 2018, 217, 1411-1429.	5.2	38
13	Ly9 (SLAMF3) receptor differentially regulates iNKT cell development and activation in mice. European Journal of Immunology, 2018, 48, 99-105.	2.9	8
14	β-Barrel outer membrane proteins suppress mTORC2 activation and induce autophagic responses. Science Signaling, 2018, 11, .	3.6	5
15	Gene Therapy With Regulatory T Cells: A Beneficial Alliance. Frontiers in Immunology, 2018, 9, 554.	4.8	30
16	2B4 Mediates Inhibition of CD8+T Cell Responses via Attenuation of Glycolysis and Cell Division. Journal of Immunology, 2018, 201, 1536-1548.	0.8	6
17	Plasmacytoid and conventional dendritic cells cooperate in crosspriming AAV capsid-specific CD8+ T cells. Blood, 2017, 129, 3184-3195.	1.4	83
18	Cutting Edge: 2B4-Mediated Coinhibition of CD4+ T Cells Underlies Mortality in Experimental Sepsis. Journal of Immunology, 2017, 199, 1961-1966.	0.8	42

#	Article	IF	CITATIONS
19	Responses to Microbial Challenges by SLAMF Receptors. Frontiers in Immunology, 2016, 7, 4.	4.8	56
20	Slamf6 negatively regulates autoimmunity. Clinical Immunology, 2016, 173, 19-26.	3.2	24
21	Human Diversity in a Cell Surface Receptor that Inhibits Autophagy. Current Biology, 2016, 26, 1791-1801.	3.9	11
22	Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16083.	4.1	36
23	Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and anti-inflammatory drug delivery. Tetrahedron, 2016, 72, 6078-6083.	1.9	11
24	IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. Journal of Experimental Medicine, 2016, 213, 2147-2166.	8.5	79
25	Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production. Journal of Immunology, 2016, 196, 4915-4924.	0.8	14
26	Roles of CD48 in regulating immunity and tolerance. Clinical Immunology, 2016, 164, 10-20.	3.2	160
27	Selective Loss of Signaling Lymphocytic Activation Molecule Family Member 4–Positive CD8+ T Cells Contributes to the Decreased Cytotoxic Cell Activity in Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2016, 68, 164-173.	5.6	53
28	Targeting of Ly9 (CD229) Disrupts Marginal Zone and B1 B Cell Homeostasis and Antibody Responses. Journal of Immunology, 2016, 196, 726-737.	0.8	17
29	In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cellular Immunology, 2016, 301, 18-29.	3.0	34
30	A combination of an anti-SLAMF6 antibody and ibrutinib efficiently abrogates expansion of chronic lymphocytic leukemia cells. Oncotarget, 2016, 7, 26346-26360.	1.8	12
31	Synergy between rapamycin and FLT3 ligand enhances plasmacytoid dendritic cell–dependent induction of CD4+CD25+FoxP3+ Treg. Blood, 2015, 125, 2937-2947.	1.4	74
32	Selective Targeting of a Disease-Related Conformational Isoform of Macrophage Migration Inhibitory Factor Ameliorates Inflammatory Conditions. Journal of Immunology, 2015, 195, 2343-2352.	0.8	37
33	Negative Regulation of Humoral Immunity Due to Interplay between the SLAMF1, SLAMF5, and SLAMF6 Receptors. Frontiers in Immunology, 2015, 6, 158.	4.8	32
34	Migration of Myeloid Cells during Inflammation Is Differentially Regulated by the Cell Surface Receptors Slamf1 and Slamf8. PLoS ONE, 2015, 10, e0121968.	2.5	33
35	Plant-based oral tolerance to hemophilia therapy employs a complex immune regulatory response including LAP+CD4+ T cells. Blood, 2015, 125, 2418-2427.	1.4	57
36	Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses. Journal of Virology, 2015, 89, 11323-11336.	3.4	17

#	Article	IF	CITATIONS
37	SLAMF4 Is a Negative Regulator of Expansion of Cytotoxic Intraepithelial CD8+ T Cells That Maintains Homeostasis in the Small Intestine. Gastroenterology, 2015, 148, 991-1001.e4.	1.3	18
38	The cell surface receptor Slamf6 modulates innate immune responses during <i>Citrobacter rodentium</i> -induced colitis. International Immunology, 2015, 27, 447-457.	4.0	9
39	SLAMF1 regulation of chemotaxis and autophagy determines CLL patient response. Journal of Clinical Investigation, 2015, 126, 181-194.	8.2	44
40	Treg: tolerance <i>vs</i> immunity. Oncotarget, 2015, 6, 19956-19957.	1.8	1
41	SLAMF1/CD150 Activates Autophagy in Chronic Lymphocytic Leukemia Cells, Modulating Chemotaxis and Responses to Therapy. Blood, 2015, 126, 1728-1728.	1.4	0
42	Glucocorticoid-Induced TNF Receptor Family-Related Protein Ligand is Requisite for Optimal Functioning of Regulatory CD4+ T Cells. Frontiers in Immunology, 2014, 5, 35.	4.8	25
43	Editorial overview: Autoimmunity. Current Opinion in Immunology, 2014, 31, v-vii.	5.5	5
44	Ex vivo expanded autologous polyclonal regulatory T cells suppress inhibitor formation in hemophilia. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14030.	4.1	59
45	Glucocorticoidâ€induced TNF receptor familyâ€related protein ligand regulates the migration of monocytes to the inflamed intestine. FASEB Journal, 2014, 28, 474-484.	0.5	12
46	SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors. Frontiers in Immunology, 2014, 5, 186.	4.8	32
47	GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nature Immunology, 2014, 15, 63-71.	14.5	36
48	Lloyd Mayer, MD, 1952–2013, In Memoriam. Clinical Immunology, 2014, 150, A1-A2.	3.2	0
49	Development of gene transfer for induction of antigen-specific tolerance. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14013.	4.1	68
50	SAP modulates B cell functions in a genetic background-dependent manner. Immunology Letters, 2013, 153, 15-21.	2.5	5
51	Expansion of an osteopontinâ€expressing T follicular helper cell subset correlates with autoimmunity in <i>B6.Sle1b</i> mice and is suppressed by the H1â€isoform of the Slamf6 receptor. FASEB Journal, 2013, 27, 3123-3131.	0.5	21
52	Circulatory Antigen Processing by Mucosal Dendritic Cells Controls CD8+ T Cell Activation. Immunity, 2013, 38, 153-165.	14.3	92
53	Mechanism of oral tolerance induction to therapeutic proteins. Advanced Drug Delivery Reviews, 2013, 65, 759-773.	13.7	74
54	Cutting Edge: Ly9 (CD229), a SLAM Family Receptor, Negatively Regulates the Development of Thymic Innate Memory-like CD8+ T and Invariant NKT Cells. Journal of Immunology, 2013, 190, 21-26.	0.8	33

#	Article	IF	CITATIONS
55	Ly9 (CD229) Cell-Surface Receptor is Crucial for the Development of Spontaneous Autoantibody Production to Nuclear Antigens. Frontiers in Immunology, 2013, 4, 225.	4.8	30
56	Receptor Signaling Lymphocyte-activation Molecule Family 1 (Slamf1) Regulates Membrane Fusion and NADPH Oxidase 2 (NOX2) Activity by Recruiting a Beclin-1/Vps34/Ultraviolet Radiation Resistance-associated Gene (UVRAG) Complex. Journal of Biological Chemistry, 2012, 287, 18359-18365.	3.4	40
57	SAP expression in invariant NKT cells is required for cognate help to support B-cell responses. Blood, 2012, 120, 122-129.	1.4	33
58	CD3-T Cell Receptor Co-stimulation through SLAMF3 and SLAMF6 Receptors Enhances RORÎ ³ t Recruitment to the IL17A Promoter in Human T Lymphocytes. Journal of Biological Chemistry, 2012, 287, 38168-38177.	3.4	22
59	Glucocorticoid-Induced Tumor Necrosis Factor Receptor Family-Related Protein Regulates CD4+T Cell–Mediated Colitis in Mice. Gastroenterology, 2012, 142, 582-591.e8.	1.3	38
60	Signaling Lymphocyte Activation Molecule Regulates Development of Colitis in Mice. Gastroenterology, 2012, 143, 1544-1554.e7.	1.3	18
61	Cutting Edge: Slamf8 Is a Negative Regulator of Nox2 Activity in Macrophages. Journal of Immunology, 2012, 188, 5829-5832.	0.8	39
62	Slamf-1/CD150 Is a Signaling Receptor Expressed by a Subset of Chronic Lymphocytic Leukemia Patients Characterized by a Favorable Prognosis. Blood, 2012, 120, 1770-1770.	1.4	1
63	Suppression of Inhibitor Formation in Protein and Gene Therapy for Hemophilia Using Ex Vivo Expanded Treg. Blood, 2012, 120, 13-13.	1.4	1
64	Synergistic Effect of Flt3L and Rapamycin On Immune Tolerance Induction Via Plasmacytoid Dendritic Cells and Treg Blood, 2012, 120, 2209-2209.	1.4	0
65	Tight Regulation of Memory CD8+ T Cells Limits Their Effectiveness during Sustained High Viral Load. Immunity, 2011, 35, 285-298.	14.3	141
66	Cutting Edge: An NK Cell-Independent Role for Slamf4 in Controlling Humoral Autoimmunity. Journal of Immunology, 2011, 187, 21-25.	0.8	36
67	A novel isoform of the Ly108 gene ameliorates murine lupus. Journal of Experimental Medicine, 2011, 208, 811-822.	8.5	59
68	Auto-antibody production and glomerulonephritis in congenic Slamf1-/- and Slamf2-/- [B6.129] but not in Slamf1-/- and Slamf2-/- [BALB/c.129] mice. International Immunology, 2011, 23, 149-158.	4.0	20
69	SLAM family receptors and the SLAM-associated protein (SAP) modulate T cell functions. Seminars in Immunopathology, 2010, 32, 157-171.	6.1	96
70	SLAM is a microbial sensor that regulates bacterial phagosome functions in macrophages. Nature Immunology, 2010, 11, 920-927.	14.5	156
71	GITR engagement preferentially enhances proliferation of functionally competent CD4+CD25+FoxP3+ regulatory T cells. International Immunology, 2010, 22, 259-270.	4.0	80
72	Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in <i>Rag</i> -dependent immunodeficiency. Journal of Experimental Medicine, 2010, 207, 1541-1554.	8.5	90

#	Article	IF	CITATIONS
73	Cutting Edge: The Adapters EAT-2A and -2B Are Positive Regulators of CD244- and CD84-Dependent NK Cell Functions in the C57BL/6 Mouse. Journal of Immunology, 2010, 185, 5683-5687.	0.8	33
74	Mouse CD84 is a <i>pan</i> -leukocyte cell-surface molecule that modulates LPS-induced cytokine secretion by macrophages. Journal of Leukocyte Biology, 2010, 88, 687-697.	3.3	44
75	The SLAM and SAP Gene Families Control Innate and Adaptive Immune Responses. Advances in Immunology, 2008, 97, 177-250.	2.2	138
76	Mapping Autoimmune Disease Genes in Humans: Lessons from IBD and SLE. Novartis Foundation Symposium, 2008, , 94-112.	1.1	3
77	Homotypic Interactions Mediated by Slamf1 and Slamf6 Receptors Control NKT Cell Lineage Development. Immunity, 2007, 27, 751-762.	14.3	301
78	The SLAM-Associated Protein Signaling Pathway Is Required for Development of CD4+ T Cells Selected by Homotypic Thymocyte Interaction. Immunity, 2007, 27, 763-774.	14.3	68
79	Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. European Journal of Immunology, 2007, 37, 663-674.	2.9	42
80	CD48 Controls T-Cell and Antigen-Presenting Cell Functions in Experimental Colitis. Gastroenterology, 2006, 130, 424-434.	1.3	28
81	SLAM/SLAM interactions inhibit CD40-induced production of inflammatory cytokines in monocyte-derived dendritic cells. Blood, 2006, 107, 2821-2829.	1.4	46
82	Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood, 2005, 106, 3028-3034.	1.4	92
83	Cutting Edge: Signaling Lymphocytic Activation Molecule-Associated Protein Controls NKT Cell Functions. Journal of Immunology, 2005, 174, 3153-3157.	0.8	160
84	Defective B cell responses in the absence of SH2D1A. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4819-4823.	7.1	68
85	Cutting Edge: The SLAM Family Receptor Ly108 Controls T Cell and Neutrophil Functions. Journal of Immunology, 2005, 174, 5931-5935.	0.8	69
86	Signaling Lymphocyte Activation Molecule-Associated Protein Is a Negative Regulator of the CD8 T Cell Response in Mice. Journal of Immunology, 2005, 175, 2212-2218.	0.8	37
87	SLAM Family Receptors Distinguish Hematopoietic Stem and Progenitor Cells and Reveal Endothelial Niches for Stem Cells. Cell, 2005, 121, 1109-1121.	28.9	2,815
88	Mapping autoimmune disease genes in humans: lessons from IBD and SLE. Novartis Foundation Symposium, 2005, 267, 94-107; discussion 107-12.	1.1	4
89	The Cell Surface Receptor SLAM Controls T Cell and Macrophage Functions. Journal of Experimental Medicine, 2004, 199, 1255-1264.	8.5	153
90	Cutting Edge: The Natural Ligand for Glucocorticoid-Induced TNF Receptor-Related Protein Abrogates Regulatory T Cell Suppression. Journal of Immunology, 2004, 172, 5823-5827.	0.8	191

#	Article	IF	CITATIONS
91	Dynamic Redistribution of the Activating 2B4/SAP Complex at the Cytotoxic NK Cell Immune Synapse. Journal of Immunology, 2004, 173, 3640-3646.	0.8	52
92	SAP increases FynT kinase activity and is required for phosphorylation of SLAM and Ly9. International Immunology, 2004, 16, 727-736.	4.0	54
93	Expression of theSH2D1A gene is regulated by a combination of transcriptional and post-transcriptional mechanisms. European Journal of Immunology, 2004, 34, 3176-3186.	2.9	16
94	SAP couples Fyn to SLAM immune receptors. Nature Cell Biology, 2003, 5, 155-160.	10.3	259
95	The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nature Reviews Immunology, 2003, 3, 813-821.	22.7	292
96	T Cell-specific Expression of the MurineCD3l´ Promoter. Journal of Biological Chemistry, 2002, 277, 47898-47906.	3.4	22
97	Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation. Blood, 2002, 99, 957-965.	1.4	76
98	The role of SAP in murine CD150 (SLAM)-mediated T-cell proliferation and interferon \hat{I}^3 production. Blood, 2002, 100, 2899-2907.	1.4	67
99	Identification and characterization of SF2000 and SF2001, two new members of the immune receptor SLAM/CD2 family. Immunogenetics, 2002, 53, 843-850.	2.4	55
100	Mouse novel Ly9: a new member of the expanding CD150 (SLAM) family of leukocyte cell-surface receptors. Immunogenetics, 2002, 54, 394-402.	2.4	29
101	A â€~three-pronged' binding mechanism for the SAP/SH2D1A SH2 domain: structural basis and relevance to the XLP syndrome. EMBO Journal, 2002, 21, 314-323.	7.8	82
102	X-LINKEDLYMPHOPROLIFERATIVEDISEASE: A Progressive Immunodeficiency. Annual Review of Immunology, 2001, 19, 657-682.	21.8	209
103	Cell surface receptors Ly-9 and CD84 recruit the X-linked lymphoproliferative disease gene product SAP. Blood, 2001, 97, 3867-3874.	1.4	131
104	Alterations of the X-linked lymphoproliferative disease geneSH2D1A in common variable immunodeficiency syndrome. Blood, 2001, 98, 1321-1325.	1.4	112
105	CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells. Immunogenetics, 2001, 53, 382-394.	2.4	53
106	SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nature Immunology, 2001, 2, 410-414.	14.5	219
107	Development of chronic colitis is dependent on the cytokine MIF. Nature Immunology, 2001, 2, 1061-1066.	14.5	288
108	Characterization of SH2D1A Missense Mutations Identified in X-linked Lymphoproliferative Disease Patients. Journal of Biological Chemistry, 2001, 276, 36809-36816.	3.4	82

#	Article	IF	CITATIONS
109	Genomic organization and characterization of mouse SAP , the gene that is altered in X-linked lymphoproliferative disease. Immunogenetics, 2000, 51, 805-815.	2.4	47
110	Pathways of T cell Pathology in Models of Chronic Intestinal Inflammation. International Reviews of Immunology, 2000, 19, 1-37.	3.3	8
111	Crystal Structures of the XLP Protein SAP Reveal a Class of SH2 Domains with Extended, Phosphotyrosine-Independent Sequence Recognition. Molecular Cell, 1999, 4, 555-561.	9.7	237
112	T Cell–mediated Pathology in Two Models of Experimental Colitis Depends Predominantly on the Interleukin 12/Signal Transducer and Activator of Transcription (Stat)-4 Pathway, but Is Not Conditional on Interferon γ Expression by T Cells. Journal of Experimental Medicine, 1998, 187, 1225-1234.	8.5	269
113	CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB Journal, 1998, 12, 581-592.	0.5	90
114	Absence of Natural Killer Cells during Murine Pregnancy is Associated with Reproductive Compromise in TgE26 Mice1. Biology of Reproduction, 1997, 56, 169-179.	2.7	248
115	Development and function of T lymphocytes and natural killer cells after bone marrow transplantation of severely immunodeficient mice. Immunological Reviews, 1997, 157, 53-60.	6.0	28
116	T lymphocyte apoptosis induced by CD8Î μ chimera. Science Bulletin, 1997, 42, 222-227.	1.7	2
117	Expression of pro-inflammatory cytokines by TCRαβ+ T and TCRγδ+ T cells in an experimental model of colitis. European Journal of Immunology, 1997, 27, 17-25.	2.9	121
118	Pregnancyâ€Associated Uterine Granulated Metrial Gland Cells in Mutant and Transgenic Mice. American Journal of Reproductive Immunology, 1996, 35, 501-509.	1.2	27
119	Regulation of T cell receptor (TCR)-β locus allelic exclusion and initiation of TCR-α locus rearrangement in immature thymocytes by signaling through the CD3 complex. European Journal of Immunology, 1995, 25, 1257-1261.	2.9	68
120	Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. European Journal of Immunology, 1995, 25, 2618-2625.	2.9	137
121	Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature, 1995, 373, 350-353.	27.8	268
122	Covalent binding of guanine nucleotides to the CD3-Î ³ chain of the T cell receptor/CD3 complex. European Journal of Immunology, 1993, 23, 461-466.	2.9	6
123	The T cell receptor associated CD3-ε protein is phosphorylated upon T cell activation in the two tyrosine residues of a conserved signal transduction motif. European Journal of Immunology, 1993, 23, 1636-1642.	2.9	37
124	Cloning and sequencing of the cDNA encoding the human homologue of the murine immunoglobulin-associated protein B29. European Journal of Immunology, 1992, 22, 1621-1625.	2.9	44
125	Genetic reconstitution of the T cell receptor (TcR) $\hat{I} \pm / \hat{I}^2$ heterodimer restores the association of CD3 \hat{I} and \hat{I} with the TcR/CD3 complex. European Journal of Immunology, 1991, 21, 473-481.	2.9	10
126	Surface expression of CD3 in the absence of T cell receptor (TcR): evidence for sorting of partial TcR/CD3 complexes in a post-endoplasmic reticulum compartment. European Journal of Immunology, 1989, 19, 2309-2317.	2.9	37

#	Article	IF	CITATIONS
127	The transmembrane orientation of the ε chain of the TcR/CD3 complex. European Journal of Immunology, 1988, 18, 705-710.	2.9	15
128	Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex. Nature, 1986, 321, 431-434.	27.8	158
129	A T3-like protein complex associated with the antigen receptor on murine T cells. Nature, 1986, 320, 272-275.	27.8	221
130	Expression of genes of the T-cell antigen receptor complex in precursor thymocytes. Nature, 1985, 315, 765-768.	27.8	133
131	Association between the human thymic differentiation antigens T6 and TS. European Journal of Immunology, 1985, 15, 529-532.	2.9	70
132	Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex. Nature, 1984, 312, 413-418.	27.8	238
133	The δ- and ε-chains of the human T3/T-cell receptor complex are distinct polypeptides. Nature, 1984, 312, 455-458.	27.8	108
134	The T3 complex on human thymus-derived lymphocytes contains two different subunits of 20 kDa. European Journal of Immunology, 1983, 13, 576-580.	2.9	106
135	Characterization of T cell surface glycoproteins T1 and T3 present on all human peripheral T lymphocytes and functionally mature thymocytes. European Journal of Immunology, 1981, 11, 18-21.	2.9	146
136	Antibody directed at a surface structure inhibits cytolytic but not suppressor function of human T lymphocytes. Nature, 1981, 294, 168-170.	27.8	112
137	Identification of a Cell-Surface Protein Involved in the Binding Site of Sindbis Virus on Human Lymphoblastoic Cell Lines Using a Heterobifunctional Cross-Linker. FEBS Journal, 1981, 115, 153-158.	0.2	42
138	The human †T' genetic region of the HLA linkage group is a polymorphism detected on lectin-activated lymphocytes. Nature, 1980, 284, 275-277.	27.8	71
139	SLAMF8 Downregulates Mouse Macrophage Microbicidal Mechanisms via PI3K Pathways. Frontiers in Immunology, 0, 13, .	4.8	4