Alvaro Glavic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5903844/publications.pdf

Version: 2024-02-01

414414 394421 6,219 32 19 32 citations h-index g-index papers 34 34 34 16392 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics, 2022, 114, 305-315.	2.9	5
2	p53 Related Protein Kinase is Required for Arp2/3-Dependent Actin Dynamics of Hemocytes in Drosophila melanogaster. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	2
3	The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the ⟨i⟩Drosophila⟨/i⟩ Blood–Brain Barrier. Journal of Neuroscience, 2021, 41, 6430-6448.	3. 6	9
4	Control of lysosomal-mediated cell death by the pH-dependent calcium channel RECS1. Science Advances, 2021, 7, eabe5469.	10.3	14
5	Genotoxic stress triggers the activation of IRE1 \hat{i} ±-dependent RNA decay to modulate the DNA damage response. Nature Communications, 2020, 11, 2401.	12.8	62
6	Trpml controls actomyosin contractility and couples migration to phagocytosis in fly macrophages. Journal of Cell Biology, 2020, 219, .	5. 2	7
7	Light-Induced Opening of the TRP Channel in Isolated Membrane Patches Excised from Photosensitive Microvilli from Drosophila Photoreceptors. Neuroscience, 2019, 396, 66-72.	2.3	8
8	p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS ONE, 2018, 13, e0194344.	2.5	6
9	IRE1α governs cytoskeleton remodelling and cell migration through a direct interaction with filamin A. Nature Cell Biology, 2018, 20, 942-953.	10.3	98
10	An in vitro method for studying subcellular rearrangements during cell polarization in Drosophila melanogaster hemocytes. Mechanisms of Development, 2018, 154, 277-286.	1.7	3
11	A role for Lin-28 in growth and metamorphosis in Drosophila melanogaster. Mechanisms of Development, 2018, 154, 107-115.	1.7	9
12	Drosophila p115 is required for Cdk1 activation and G2/M cell cycle transition. Mechanisms of Development, 2017, 144, 191-200.	1.7	6
13	ModulationÂofÂtheÂProteostasisÂMachineryÂto OvercomeÂStressÂCausedÂbyÂDiminishedÂLevelsÂofÂ t6Aâ€ModifiedÂtRNAsÂinÂDrosophila. Biomolecules, 2017, 7, 25.	4.0	11
14	Global translational impacts of the loss of the tRNA modification t6A in yeast. Microbial Cell, 2016, 3, 29-45.	3.2	101
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
16	The Levels of a Universally Conserved tRNA Modification Regulate Cell Growth. Journal of Biological Chemistry, 2015, 290, 18699-18707.	3.4	38
17	Drosophila p53-related protein kinase is required for PI3K/TOR pathway-dependent growth. Development (Cambridge), 2013, 140, 1282-1291.	2.5	29
18	csrnp1a Is Necessary for the Development of Primitive Hematopoiesis Progenitors in Zebrafish. PLoS ONE, 2013, 8, e53858.	2.5	8

#	Article	IF	CITATION
19	The <i>Drosophila</i> EKC/KEOPS complex. Fly, 2013, 7, 168-172.	1.7	15
20	Intertissue Mechanical Stress Affects Frizzled-Mediated Planar Cell Polarity in the Drosophila Notum Epidermis. Current Biology, 2011, 21, 236-242.	3.9	45
21	BAX inhibitor-1 regulates autophagy by controlling the IRE1 \hat{l}_{\pm} branch of the unfolded protein response. EMBO Journal, 2011, 30, 4465-4478.	7.8	105
22	A Gain-of-Function Screen Identifying Genes Required for Growth and Pattern Formation of the <i>Drosophila melanogaster</i> Wing. Genetics, 2009, 183, 1005-1026.	2.9	59
23	Cysteinâ€serineâ€rich nuclear protein 1, Axud1/Csrnp1, is essential for cephalic neural progenitor proliferation and survival in zebrafish. Developmental Dynamics, 2009, 238, 2034-2043.	1.8	32
24	BAX Inhibitor-1 Is a Negative Regulator of the ER Stress Sensor IRE1α. Molecular Cell, 2009, 33, 679-691.	9.7	281
25	Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mechanisms of Development, 2009, 126, 184-197.	1.7	25
26	Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development (Cambridge), 2004, 131, 347-359.	2.5	97
27	Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Developmental Biology, 2004, 272, 89-103.	2.0	93
28	Posteriorization by FGF, Wnt, and Retinoic Acid Is Required for Neural Crest Induction. Developmental Biology, 2002, 241, 289-301.	2.0	220
29	Xiro homeoproteins coordinate cell cycle exit and primary neuron formation by upregulating neuronal-fate repressors and downregulating the cell-cycle inhibitor XGadd45- \hat{l}^3 . Mechanisms of Development, 2002, 119, 69-80.	1.7	56
30	Extracellular signals, cell interactions and transcription factors involved in the induction of the neural crest cells. Biological Research, 2002, 35, 267-75.	3.4	22
31	The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation. Development (Cambridge), 2002, 129, 1609-21.	2.5	21
32	Xiro-1controls mesoderm patterning by repressing bmp-4 expression in the spemann organizer. Developmental Dynamics, 2001, 222, 368-376.	1.8	31