Stephen M Sykes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5903482/publications.pdf Version: 2024-02-01

STEDHEN M SYKES

#	Article	IF	CITATIONS
1	The ERK2 DBP domain opposes pathogenesis of a JAK2V617F-driven myeloproliferative neoplasm. Blood, 2022, , .	0.6	1
2	The SAGA complex regulates early steps in transcription via its deubiquitylase module subunit USP22. EMBO Journal, 2021, 40, e102509.	3.5	9
3	<i>TET2</i> and <i>DNMT3A</i> Mutations Exert Divergent Effects on DNA Repair and Sensitivity of Leukemia Cells to PARP Inhibitors. Cancer Research, 2021, 81, 5089-5101.	0.4	25
4	ERK2 Substrate Binding Domains Perform Opposing Roles in Pathogenesis of a JAK2V617F-Driven Myeloproliferative Neoplasm. Blood, 2021, 138, 2547-2547.	0.6	2
5	NCAM1 supports therapy resistance and LSC function in AML. Blood, 2019, 133, 2247-2248.	0.6	3
6	The -2518 A/G polymorphism of the monocyte chemoattractant protein-1 as a candidate genetic predisposition factor for secondary myelofibrosis and biomarker of disease severity. Leukemia, 2018, 32, 2266-2270.	3.3	16
7	Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 608-618.	3.2	20
8	Pkcε Is a Central Regulator of Mitochondrial Function and Metabolism in Acute Myeloid Leukemia. Blood, 2018, 132, 3926-3926.	0.6	0
9	JUN and ATF3 Regulate the Transcriptional Output of the Unfolded Protein Response to Support Acute Myeloid Leukemia. Blood, 2018, 132, 1327-1327.	0.6	2
10	MLL-AF9 leukemias are sensitive to PARP1 inhibitors combined with cytotoxic drugs. Blood Advances, 2017, 1, 1467-1472.	2.5	23
11	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	3.9	64
12	A rare DNA contact mutation in cancer confers p53 gainâ€ofâ€function and tumor cell survival via TNFAIP8 induction. Molecular Oncology, 2016, 10, 1207-1220.	2.1	27
13	The identity crisis of Hif-1α in HSC biology. Blood, 2016, 127, 2782-2784.	0.6	4
14	The RET Receptor Tyrosine Kinase Promotes Acute Myeloid Leukemia through Protection of FLT3-ITD Mutants from Autophagic Degradation. Blood, 2016, 128, 2849-2849.	0.6	4
15	Ribosomal Protein L22 Loss Predisposes Stem Cells to Transformation By Altering Metabolism. Blood, 2016, 128, 2733-2733.	0.6	0
16	Clonal evolution of preleukemic hematopoietic stem cells in acute myeloid leukemia. Experimental Hematology, 2015, 43, 989-992.	0.2	25
17	Transmembrane Inhibitor of RICTOR/mTORC2 in Hematopoietic Progenitors. Stem Cell Reports, 2014, 3, 832-840.	2.3	17
18	mTOR kinase inhibitors promote antibody class switching via mTORC2 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5076-85.	3.3	57

STEPHEN M SYKES

#	Article	IF	CITATIONS
19	Gene Expression and Mutation Analysis (GEMA) –Guided Precision Medicine Targeting PARP1 to Induce Synthetic Lethality in DNA-PK –Deficient Quiescent and BRCA-Deficient Proliferating Leukemia Stem and Progenitor Cells. Blood, 2014, 124, 480-480.	0.6	0
20	Modeling Human Hematopoietic Stem Cell Biology in the Mouse. Seminars in Hematology, 2013, 50, 92-100.	1.8	27
21	Oncogene-Induced DNA Repair Defects Promote PARP1-Mediated "Dual Synthetic Lethality―To Eradicate Quiescent and Proliferating Leukemia Stem and Progenitor Cells. Blood, 2013, 122, 810-810.	0.6	2
22	Requirement For CDK6 In MLL-Rearranged Acute Myeloid Leukemia. Blood, 2013, 122, 3782-3782.	0.6	0
23	mTOR Complex 1 Plays Critical Roles in Hematopoiesis and Pten-Loss-Evoked Leukemogenesis. Cell Stem Cell, 2012, 11, 429-439.	5.2	172
24	Hematopoietic Stem/Progenitor Cell Retention in the Bone Marrow Depends On Tissue Specific Heparan Sulfate Proteoglycans. Blood, 2012, 120, 637-637.	0.6	1
25	Aldehyde Dehydrogenase 3a2 (Aldh3a2) Represents a Distinct Metabolic Vulnerability in MLL-AF9 AML Leukemia Initiating Cells. Blood, 2012, 120, 208-208.	0.6	0
26	AKT/FOXO Signaling Enforces Reversible Differentiation Blockade in Myeloid Leukemias. Cell, 2011, 146, 697-708.	13.5	232
27	Deacetylation of the DNA-binding Domain Regulates p53-mediated Apoptosis. Journal of Biological Chemistry, 2011, 286, 4264-4270.	1.6	32
28	Diabetes Impairs Hematopoietic Stem Cell Mobilization by Altering Niche Function. Science Translational Medicine, 2011, 3, 104ra101.	5.8	254
29	Distinct Metabolic Dependency of Normal and Leukemic Cells in a Mouse Model. Blood, 2011, 118, 759-759.	0.6	0
30	Mtor Complex 1 Plays Critical Roles in Hematopoiesis and Pten-Loss-Evoked Leukemogenesis. Blood, 2011, 118, 391-391.	0.6	0
31	Myeloid Leukemogenesis Driven by Aberrant CDX2 Expression Involves Transcriptional Repression of KLF4 and Deregulated PPARÎ ³ Signaling. Blood, 2011, 118, 1355-1355.	0.6	0
32	The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood, 2010, 115, 3489-3497.	0.6	88
33	Hematopoietic Stem Cell Defects in Mice with Deficiency of Fancd2 or Usp1. Stem Cells, 2010, 28, 1186-1195.	1.4	96
34	Acetylation of the DNA Binding Domain Regulates Transcription-independent Apoptosis by p53. Journal of Biological Chemistry, 2009, 284, 20197-20205.	1.6	70
35	A Regulatory Network Between Notch and AKT Signaling Pathways Differentially Controls Megakaryocyte Development From Hematopoietic Stem or Committed Progenitor Cells Blood, 2009, 114, 384-384.	0.6	1
36	Leukemia Stem Cells Are Resistant to In Vivo, Cell Non-Autonomous Wnt Inhibition Blood, 2009, 114, 1025-1025.	0.6	0

STEPHEN M SYKES

#	Article	IF	CITATIONS
37	The Putative Cancer Stem Cell Marker USP22 Is a Subunit of the Human SAGA Complex Required for Activated Transcription and Cell-Cycle Progression. Molecular Cell, 2008, 29, 102-111.	4.5	370
38	p16INK4a Is a Key Downstream Mediator of the Deleterious Effects of FoxO Deficiency on Maintenance of the Hematopoietic Stem Cell Compartment Blood, 2008, 112, 1405-1405.	0.6	0
39	The ARF/Oncogene Pathway Activates p53 Acetylation within the DNA Binding Domain. Cell Cycle, 2007, 6, 1304-1306.	1.3	22
40	Acetylation of the p53 DNA-Binding Domain Regulates Apoptosis Induction. Molecular Cell, 2006, 24, 841-851.	4.5	647
41	Menin Induces Apoptosis in Murine Embryonic Fibroblasts. Journal of Biological Chemistry, 2004, 279, 10685-10691.	1.6	71
42	Fusion proteins of retinoid receptors antagonize TGF-β-induced growth inhibition of lung epithelial cells. Oncogene, 2003, 22, 198-210.	2.6	18
43	Menin associates with FANCD2, a protein involved in repair of DNA damage. Cancer Research, 2003, 63, 4204-10.	0.4	121