
Ian A Howard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5902374/publications.pdf Version: 2024-02-01

Ινν η Ηοληγο

#	Article	IF	CITATIONS
1	Correlative In Situ Multichannel Imaging for Largeâ€Area Monitoring of Morphology Formation in Solutionâ€Processed Perovskite Layers. Solar Rrl, 2022, 6, 2100353.	5.8	9
2	BODIPY–pyrene donor–acceptor sensitizers for triplet–triplet annihilation upconversion: the impact of the BODIPY-core on upconversion efficiency. Physical Chemistry Chemical Physics, 2022, 24, 3568-3578.	2.8	14
3	Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Scientific Reports, 2022, 12, 2100.	3.3	14
4	Unclonable Antiâ€Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles. Advanced Optical Materials, 2022, 10, .	7.3	9
5	Lasing from Laminated Quasiâ€2D/3D Perovskite Planar Heterostructures. Advanced Functional Materials, 2022, 32, .	14.9	6
6	Light Management for Enhancing Optical Gain in a Solarâ€Pumped Fiber Laser Employing a Solidâ€State Luminescent Solar Concentrator. Advanced Photonics Research, 2022, 3, .	3.6	5
7	Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules. Chemical Science, 2021, 12, 1121-1125.	7.4	8
8	Bright constant color upconversion based on dual 980 and 1550Ânm excitation of SrF2:Yb3+, Er3+ and β-NaYF4:Yb3+, Er3+ micropowders― considerations for persistence of vision displays. Optical Materials, 2021, 111, 110598.	3.6	12
9	Interplay of structural dynamics and electronic effects in an engineered assembly of pentacene in a metal–organic framework. Chemical Science, 2021, 12, 4477-4483.	7.4	18
10	Experimental validation of a modeling framework for upconversion enhancement in 1D-photonic crystals. Nature Communications, 2021, 12, 104.	12.8	22
11	Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales. IScience, 2021, 24, 102207.	4.1	5
12	Bimolecular and Auger Recombination in Phase-Stable Perovskite Thin Films from Cryogenic to Room Temperature and Their Effect on the Amplified Spontaneous Emission Threshold. Journal of Physical Chemistry Letters, 2021, 12, 2293-2298.	4.6	13
13	How free exciton–exciton annihilation lets bound exciton emission dominate the photoluminescence of 2D-perovskites under high-fluence pulsed excitation at cryogenic temperatures. Journal of Applied Physics, 2021, 129, .	2.5	11
14	Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter, 2021, 4, 1391-1412.	10.0	35
15	Anticounterfeiting Labels with Smartphoneâ€Readable Dynamic Luminescent Patterns Based on Tailored Persistent Lifetimes in Gd ₂ O ₂ S:Eu ³⁺ /Ti ⁴⁺ . Advanced Materials Technologies, 2021, 6, 2100047.	5.8	23
16	Solar Pumping of Fiber Lasers with Solidâ€6tate Luminescent Concentrators: Design Optimization by Ray Tracing. Advanced Optical Materials, 2021, 9, 2100479.	7.3	10
17	Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites. Materials Today, 2021, 49, 35-47.	14.2	22
18	Photon Upconversion for Photovoltaics and Photocatalysis: AÂCriticalÂReview. Chemical Reviews, 2021, 121, 9165-9195.	47.7	190

#	Article	IF	CITATIONS
19	An up-conversion luminophore with high quantum yield and brightness based on BaF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2021, 9, 3493-3503.	5.5	34
20	Ratiometric Luminescent Thermometry with Excellent Sensitivity over a Broad Temperature Range Utilizing Thermallyâ€Assisted and Multiphoton Upconversion in Triplyâ€Doped La ₂ O ₃ :Yb ³⁺ /Er ³⁺ /Nd ³⁺ . Advanced Optical Materials, 2021, 9, 2001901.	7.3	27
21	Interface Pattern Engineering in Coreâ€Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties. Small, 2021, 17, e2104441.	10.0	17
22	Crystalline assembly of perylene in metal–organic framework thin film: J-aggregate or excimer? Insight into the electronic structure. Journal of Physics Condensed Matter, 2021, 33, 034001.	1.8	1
23	Interpreting the Timeâ€Resolved Photoluminescence of Quasiâ€2D Perovskites. Advanced Materials Interfaces, 2021, 8, 2101326.	3.7	7
24	Solution-processed and evaporated C60 interlayers for improved charge transport in perovskite photovoltaics. Organic Electronics, 2020, 77, 105526.	2.6	7
25	Vacuumâ€Assisted Growth of Lowâ€Bandgap Thin Films (FA _{0.8} MA _{0.2} Sn _{0.5} Pb _{0.5} I ₃) for Allâ€Perovskite Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902583.	19.5	60
26	Spontaneous enhancement of the stable power conversion efficiency in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 670-682.	10.3	47
27	Smartphoneâ€Based Luminescent Thermometry via Temperature‧ensitive Delayed Fluorescence from Gd ₂ O ₂ S:Eu ³⁺ . Advanced Optical Materials, 2020, 8, 2000507.	7.3	35
28	Guest-responsive polaritons in a porous framework: chromophoric sponges in optical QED cavities. Chemical Science, 2020, 11, 7972-7978.	7.4	16
29	Tuning Optical Properties by Controlled Aggregation: Electroluminescence Assisted by Thermallyâ€Activated Delayed Fluorescence from Thin Films of Crystalline Chromophores. Chemistry - A European Journal, 2020, 26, 17016-17020.	3.3	25
30	Phonon density of states in lanthanide-based nanocrystals. Physical Review B, 2020, 102, .	3.2	6
31	Lanthanide Sensitizers for Large Anti-Stokes Shift Near-Infrared-to-Visible Triplet–Triplet Annihilation Photon Upconversion. Journal of Physical Chemistry Letters, 2020, 11, 2477-2481.	4.6	24
32	A fully planar solar pumped laser based on a luminescent solar collector. Communications Physics, 2020, 3, .	5.3	28
33	Inorganic fluorescent marker materials for identification of post-consumer plastic packaging. Resources, Conservation and Recycling, 2020, 161, 104976.	10.8	47
34	Sensitizing TADF Absorption Using Variable Length Oligo(phenylene ethynylene) Antennae. Frontiers in Chemistry, 2020, 8, 126.	3.6	3
35	Tandem Solar Cells: Vacuumâ€Assisted Growth of Lowâ€Bandgap Thin Films (FA _{0.8} MA _{0.2} Sn _{0.5} Pb _{0.5} I ₃) for Allâ€Perovskite Tandem Solar Cells (Adv. Energy Mater. 5/2020). Advanced Energy Materials, 2020, 10, 2070021.	19.5	1
36	Upconversion properties of SrF ₂ :Yb ³⁺ ,Er ³⁺ single crystals. Journal of Materials Chemistry C, 2020, 8, 4093-4101.	5.5	58

#	Article	IF	CITATIONS
37	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	8.0	11
38	Improved photon absorption in dye-functionalized silicon nanocrystals synthesized <i>via</i> microwave-assisted hydrosilylation. Dalton Transactions, 2020, 49, 2290-2299.	3.3	5
39	Spontaneous Enhancement of the Power Output in Surface-Passivated Triple-Cation Perovskite Solar Cells. , 2020, , .		0
40	Solar powered fiber laser for energy conversion applications. , 2020, , .		0
41	Critical Power Density: A Metric To Compare the Excitation Power Density Dependence of Photon Upconversion in Different Inorganic Host Materials. Journal of Physical Chemistry A, 2019, 123, 6799-6811.	2.5	26
42	Investigations of singlet and triplet diffusion in thermally activated delayed-fluorescence emitters: Implications for hyperfluorescence. Physical Review B, 2019, 100, .	3.2	15
43	Interface disorder in large single- and multi-shell upconverting nanocrystals. Journal of Materials Chemistry C, 2019, 7, 1164-1172.	5.5	20
44	Synthesis of dipolar molecular rotors as linkers for metal-organic frameworks. Beilstein Journal of Organic Chemistry, 2019, 15, 1331-1338.	2.2	3
45	Perovskite Solar Cells: Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure (Adv. Energy Mater. 21/2019). Advanced Energy Materials, 2019, 9, 1970079.	19.5	10
46	An enhanced energy migration strategy in upconverting nanocrystals: color-tuning with high quantum yield. Journal of Materials Chemistry C, 2019, 7, 7371-7377.	5.5	19
47	Record Open ircuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite Heterostructure. Advanced Energy Materials, 2019, 9, 1803699.	19.5	325
48	A de novo strategy for predictive crystal engineering to tune excitonic coupling. Nature Communications, 2019, 10, 2048.	12.8	44
49	Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31, e1806702.	21.0	146
50	Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 15688-15697.	8.0	46
51	Structure–Property Relationships in Lanthanideâ€Doped Upconverting Nanocrystals: Recent Advances in Understanding Core–Shell Structures. Advanced Materials, 2019, 31, e1900623.	21.0	102
52	Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nature Communications, 2019, 10, 988.	12.8	107
53	High Open-Circuit Voltage in Wide-Bandgap Perovskite Photovoltaics with Passivation Layers Based on Large Cations. , 2019, , .		0
54	Continuous Wave Amplified Spontaneous Emission in Phase-Stable Triple Cation Lead Halide Perovskite		3

Thin Films. , 2019, , .

#	Article	IF	CITATIONS
55	Comment on "Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers― ACS Nano, 2019, 13, 12257-12258.	14.6	14
56	High Quantum Yield Singleâ€Band Green Upconversion in La ₂ O ₃ :Yb ³⁺ , Ho ³⁺ Microcrystals for Anticounterfeiting and Plastic Recycling. Particle and Particle Systems Characterization, 2019, 36, 1800462.	2.3	15
57	Continuous Wave Amplified Spontaneous Emission from Mixed Cation Perovskite devices. , 2019, , .		Ο
58	Up-conversion quantum yields of SrF ₂ :Yb ³⁺ ,Er ³⁺ sub-micron particles prepared by precipitation from aqueous solution. Journal of Materials Chemistry C, 2018, 6, 598-604.	5.5	61
59	Enhancing the photoluminescence of surface anchored metal–organic frameworks: mixed linkers and efficient acceptors. Physical Chemistry Chemical Physics, 2018, 20, 11564-11576.	2.8	18
60	The Janus-faced chromophore: a donor–acceptor dyad with dual performance in photon up-conversion. Chemical Communications, 2018, 54, 1607-1610.	4.1	24
61	Wide-range non-contact fluorescence intensity ratio thermometer based on Yb ³⁺ /Nd ³⁺ co-doped La ₂ O ₃ microcrystals operating from 290 to 1230 K. Journal of Materials Chemistry C, 2018, 6, 4163-4170.	5.5	127
62	Highly photoluminescent and stable silicon nanocrystals functionalized <i>via</i> microwave-assisted hydrosilylation. RSC Advances, 2018, 8, 9979-9984.	3.6	8
63	Reaction of porphyrin-based surface-anchored metal–organic frameworks caused by prolonged illumination. Physical Chemistry Chemical Physics, 2018, 20, 29142-29151.	2.8	8
64	Highly Efficient La ₂ O ₃ :Yb ³⁺ ,Tm ³⁺ Single-Band NIR-to-NIR Upconverting Microcrystals for Anti-Counterfeiting Applications. ACS Applied Materials & Interfaces, 2018, 10, 39851-39859.	8.0	57
65	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	12.8	54
66	A method for correcting the excitation power density dependence of upconversion emission due to laser-induced heating. Optical Materials, 2018, 82, 65-70.	3.6	23
67	Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nature Communications, 2018, 9, 2038.	12.8	104
68	Inkjet-printed perovskite distributed feedback lasers. Optics Express, 2018, 26, A144.	3.4	68
69	Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 25754-25762.	8.0	23
70	Absolute upconversion quantum yields of blue-emitting LiYF ₄ :Yb ³⁺ ,Tm ³⁺ upconverting nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 22556-22562.	2.8	66
71	A Novel Route to Plastics Recycling via Unique, Background-free, Micro-scale Photonic Markers. , 2018, , .		0
72	Room-Temperature High-Efficiency Solid-State Triplet–Triplet Annihilation Up-Conversion in Amorphous Poly(olefin sulfone)s, ACS Applied Materials & amp: Interfaces, 2017, 9, 8280-8286	8.0	29

#	Article	IF	CITATIONS
73	Identifying Charge-Transfer States in Polymer:Fullerene Heterojunctions by Their Emission Polarization Anisotropy. Journal of Physical Chemistry C, 2017, 121, 6357-6364.	3.1	7
74	Up onversion Fluorescent Labels for Plastic Recycling: A Review. Advanced Sustainable Systems, 2017, 1, 1600033.	5.3	70
75	<i>N</i> -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	5.8	30
76	Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42986-42995.	8.0	21
77	Finely-tuned NIR-to-visible up-conversion in La ₂ O ₃ :Yb ³⁺ ,Er ³⁺ microcrystals with high quantum yield. Journal of Materials Chemistry C, 2017, 5, 11010-11017.	5.5	40
78	Field-induced exciton dissociation in PTB7-based organic solar cells. Physical Review B, 2017, 95, .	3.2	35
79	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	3.3	30
80	Triple cation mixed-halide perovskites for tunable lasers. Optical Materials Express, 2017, 7, 4082.	3.0	30
81	Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers, 2017, 1, 1888-1894.	5.9	8
82	Scalable and low cost fabrication methods for wavelength tunable solution processed perovskite distributed feedback lasers. , 2017, , .		0
83	Field-induced exciton and CT-state dissociation probed by time-resolved luminescence quenching (Conference Presentation). , 2017, , .		0
84	Tunable solution processed metal organic perovskite distributed feedback lasers (Conference) Tj ETQq0 0 0 rgB	T /Overlocl	k 18 Tf 50 30
85	Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109, .	3.3	82
86	Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence. Proceedings of SPIE, 2016, , .	0.8	1
87	Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials, 2016, 28, 8477-8482.	21.0	125
88	Bragg stacks enhancing upconversion for photovoltaics: a theoretical and experimental analysis. , 2016, , .		1
89	Identifying interfacial charge transfer states in organic heterostructures (Conference Presentation). , 2016, , .		0
90	Time-Resolved Charge-Transfer State Emission in Organic Solar Cells: Temperature and Blend Composition Dependences of Interfacial Traps. Journal of Physical Chemistry C, 2015, 119, 13516-13523.	3.1	27

#	Article	IF	CITATIONS
91	Charge Carrier Generation Followed by Triplet State Formation, Annihilation, and Carrier Recreation in PBDTTT-C/PC ₆₀ BM Photovoltaic Blends. Journal of Physical Chemistry C, 2015, 119, 13509-13515.	3.1	56
92	Temperature- and Energy-Dependent Separation of Charge-Transfer States in PTB7-Based Organic Solar Cells. Journal of Physical Chemistry C, 2015, 119, 28309-28318.	3.1	35
93	Charge transfer states as traps in organic solar cells (Presentation Recording). , 2015, , .		0
94	Interplay Between Side Chain Pattern, Polymer Aggregation, and Charge Carrier Dynamics in PBDTTPD:PCBM Bulkâ€Heterojunction Solar Cells. Advanced Energy Materials, 2015, 5, 1401778.	19.5	64
95	Sub-ns triplet state formation by non-geminate recombination in PSBTBT:PC ₇₀ BM and PCPDTBT:PC ₆₀ BM organic solar cells. Energy and Environmental Science, 2015, 8, 1511-1522.	30.8	67
96	Photoinduced Chargeâ€Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?. Angewandte Chemie - International Edition, 2015, 54, 7441-7445.	13.8	206
97	The Impact of Donor–Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends. Macromolecular Rapid Communications, 2015, 36, 1054-1060.	3.9	29
98	Two Channels of Charge Generation in Perylene Monoimide Solid‧tate Dye‧ensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1300640.	19.5	18
99	Trap-Induced Losses in Hybrid Photovoltaics. ACS Nano, 2014, 8, 3213-3221.	14.6	84
100	Nonequilibrium Charge Dynamics in Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1301743.	19.5	50
101	Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.	14.9	144
102	Control of charge generation and recombination in ternary polymer/polymer:fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors. Physical Chemistry Chemical Physics, 2014, 16, 20329-20337.	2.8	30
103	Efficiency-Limiting Processes in Low-Bandgap Polymer:Perylene Diimide Photovoltaic Blends. Journal of Physical Chemistry C, 2014, 118, 20077-20085.	3.1	30
104	Observing Charge Dynamics in Surface Reactions by Time-Resolved Stark Effects. Journal of Physical Chemistry C, 2013, 117, 9171-9177.	3.1	14
105	Empirically based device modeling of bulk heterojunction organic photovoltaics. Journal of Applied Physics, 2013, 113, 154506.	2.5	15
106	Recombination Dynamics of Charge Pairs in a Push–Pull Polyfluorene-Derivative. Journal of Physical Chemistry B, 2013, 117, 4649-4653.	2.6	30
107	Charge generation in polymer:perylene diimide blends probed by Vis-NIR broadband transient absorption pump-probe spectroscopy. , 2013, , .		3
108	Empirically based device modeling of bulk heterojunction organic photovoltaics. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
109	Controlled energy shuttling in terpolymers enabling independent optimization of absorption and transport properties in organic solar cell materials. Applied Physics Letters, 2012, 101, 231104.	3.3	1
110	Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. Journal of the American Chemical Society, 2012, 134, 18303-18317.	13.7	395
111	Parallel Pool Analysis of Transient Spectroscopy Reveals Origins of and Perspectives for ZnO Hybrid Solar Cell Performance Enhancement Using Semiconducting Surfactants. Journal of Physical Chemistry Letters, 2012, 3, 2665-2670.	4.6	7
112	Synthesis and Controlled Self-Assembly of Covalently Linked Hexa- <i>peri</i> -hexabenzocoronene/Perylene Diimide Dyads as Models To Study Fundamental Energy and Electron Transfer Processes. Journal of the American Chemical Society, 2012, 134, 5876-5886.	13.7	134
113	The Effect of Solvent Additives on Morphology and Excited-State Dynamics in PCPDTBT:PCBM Photovoltaic Blends. Journal of the American Chemical Society, 2012, 134, 10569-10583.	13.7	186
114	Effect of External Bias on Nongeminate Recombination in Polythiophene/Methanofullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 1736-1741.	4.6	23
115	The Binding Energy of Charge-Transfer Excitons Localized at Polymeric Semiconductor Heterojunctions. Journal of Physical Chemistry C, 2011, 115, 7114-7119.	3.1	131
116	Ultrafast Exciton Dissociation Followed by Nongeminate Charge Recombination in PCDTBT:PCBM Photovoltaic Blends. Journal of the American Chemical Society, 2011, 133, 9469-9479.	13.7	266
117	Roomâ€Temperature Phase Demixing in Bulk Heterojunction Layers of Solutionâ€Processed Organic Photodetectors: the Effect of Active Layer Ageing on the Device Electroâ€optical Properties. Advanced Functional Materials, 2011, 21, 1355-1363.	14.9	16
118	Polythiophene:Perylene Diimide Solar Cells – the Impact of Alkyl‣ubstitution on the Photovoltaic Performance. Advanced Energy Materials, 2011, 1, 297-302.	19.5	172
119	Optical Probes of Charge Generation and Recombination in Bulk Heterojunction Organic Solar Cells. Macromolecular Chemistry and Physics, 2010, 211, 2063-2070.	2.2	48
120	Dielectric switching of the nature of excited singlet state in a donor-acceptor-type polyfluorene copolymer. Physical Review B, 2010, 81, .	3.2	29
121	Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 3500-3505.	4.6	126
122	Charge Recombination and Exciton Annihilation Reactions in Conjugated Polymer Blends. Journal of the American Chemical Society, 2010, 132, 328-335.	13.7	65
123	Effect of Morphology on Ultrafast Free Carrier Generation in Polythiophene:Fullerene Organic Solar Cells. Journal of the American Chemical Society, 2010, 132, 14866-14876.	13.7	372
124	Perylene Tetracarboxydiimide as an Electron Acceptor in Organic Solar Cells: A Study of Charge Generation and Recombination. Journal of Physical Chemistry C, 2009, 113, 21225-21232.	3.1	140
125	Efficient ZnO Nanowire Solid-State Dye-Sensitized Solar Cells Using Organic Dyes and Coreâ~'shell Nanostructures. Journal of Physical Chemistry C, 2009, 113, 18515-18522.	3.1	85
126	Idempotent density matrix derived from a local potential V(r) in terms of HOMO and LUMO properties. World Scientific Series in 20th Century Physics, 2009, , 687-688.	0.0	0

#	Article	IF	CITATIONS
127	Idempotent density matrix derived from a local potential V(r) in terms of HOMO and LUMO properties. World Scientific Series in 20th Century Physics, 2009, , 697-698.	0.0	0
128	Dependence of the π-electron eigenvalue sum on the number of atoms in almost spherical C cages. World Scientific Series in 20th Century Physics, 2009, , 845-849.	0.0	0
129	Integral equation theory of the exchange potential, HOMO–LUMO properties, and sum rules for the exchange-correlation force. World Scientific Series in 20th Century Physics, 2009, , 710-719.	0.0	0
130	Can the exchange-correlation potential of density functional theory be expressed solely in terms of HOMO and LUMO properties?. World Scientific Series in 20th Century Physics, 2009, , 699-701.	0.0	0
131	Propagator and Slater sum in one-body potential theory. World Scientific Series in 20th Century Physics, 2009, , 672-680.	0.0	0
132	Corrections to Slater exchange potential in terms of Dirac idempotent density matrix: With an approximate application to Be -like positive atomic ions for large atomic number. World Scientific Series in 20th Century Physics, 2009, , 681-686.	0.0	0
133	Nonrelativistic exchange-energy density and exchange potential in the lowest order of the 1/Z expansion for ten-electron atomic ions. World Scientific Series in 20th Century Physics, 2009, , 642-649.	0.0	0
134	Nuclear cusp conditions for components of the molecular energy density relevant for density-functional theory. World Scientific Series in 20th Century Physics, 2009, , 650-654.	0.0	0
135	Recent Progress in Constructing Nonlocal Energy Density Functionals. World Scientific Series in 20th Century Physics, 2009, , 659-671.	0.0	0
136	Nonrelativistic variationally optimized exchange potentials for Ne-like atomic ions having large atomic number. World Scientific Series in 20th Century Physics, 2009, , 655-658.	0.0	0
137	Intermolecular Interactions of Perylene diimides in Photovoltaic Blends of Fluorene Copolymers: Disorder Effects on Photophysical Properties, Film Morphology and Device Efficiency. Advanced Functional Materials, 2008, 18, 3189-3202.	14.9	87
138	Low-Temperature Control of Nanoscale Morphology for High Performance Polymer Photovoltaics. Nano Letters, 2008, 8, 3942-3947.	9.1	82
139	Charge Recombination in Organic Photovoltaic Devices with High Open-Circuit Voltages. Journal of the American Chemical Society, 2008, 130, 13653-13658.	13.7	204
140	Probing the Morphology and Energy Landscape of Blends of Conjugated Polymers with Sub-10Ânm Resolution. Physical Review Letters, 2008, 101, 016102.	7.8	57
141	Publisher's Note: Probing the Morphology and Energy Landscape of Blends of Conjugated Polymers with Sub-10Ânm Resolution [Phys. Rev. Lett.101, 016102 (2008)]. Physical Review Letters, 2008, 101, .	7.8	1
142	Exactly Solvable Model Mimicking the H2 Molecule in the Limit of Large Nuclear Masses. Journal of Mathematical Chemistry, 2007, 42, 603-615.	1.5	4
143	A 1.53 μm colloidal nanocrystal quantum dot laser. , 2006, , .		2
144	A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength. Optics Express, 2006, 14, 3273.	3.4	127

#	Article	IF	CITATIONS
145	Density functional crystal orbital study of cyano-substituted poly(para-phenylene-vinylene) and poly(quinoxaline-vinylene). International Journal of Quantum Chemistry, 2006, 106, 1912-1923.	2.0	6
146	Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442, 180-183.	27.8	1,634
147	Fermion particle density equations in relation to relativistic density functional theory. International Journal of Quantum Chemistry, 2005, 101, 651-657.	2.0	Ο
148	Slater's nonlocal exchange potential and beyond. International Journal of Quantum Chemistry, 2005, 102, 64-71.	2.0	0
149	Interaction of a hydrogen molecule with a water cage (H2O)8. Physics and Chemistry of Liquids, 2005, 43, 441-448.	1.2	1
150	Towards a differential equation for the nonrelativistic ground-state electron density of the He-like sequence of atomic ions. Physical Review A, 2005, 71, .	2.5	18
151	Interacting inhomogeneous electron liquids with harmonic confinement: <i>s</i> -wave model. Physics and Chemistry of Liquids, 2005, 43, 559-565.	1.2	1
152	Exchange potential via functional differentiation of the Dirac idempotent density matrix. Physical Review A, 2004, 69, .	2.5	5
153	Off-diagonal properties of the Feynman propagator and the Green function for a bare Coulomb field. Physical Review A, 2004, 69, .	2.5	3
154	Density matrix force-balance equation applied to He, Be, and Ne atoms and to almost-spherical methane-like molecules. International Journal of Quantum Chemistry, 2004, 100, 155-165.	2.0	1
155	Approaches to Calculation of Exciton Interaction Energies for a Molecular Dimer. Journal of Physical Chemistry B, 2004, 108, 19155-19162.	2.6	44
156	Propagator and Slater sum in one-body potential theory. Physica Status Solidi (B): Basic Research, 2003, 237, 265-273.	1.5	8
157	Many-fermion systems: Differential equations and kinetic energy functionals for different confining potentials. International Journal of Quantum Chemistry, 2003, 91, 119-125.	2.0	2
158	Recent progress in constructing nonlocal energy density functionals. International Journal of Quantum Chemistry, 2003, 92, 192-204.	2.0	2
159	Nonrelativistic variationally optimized exchange potentials for Ne-like atomic ions having large atomic number. Physical Review A, 2003, 68, .	2.5	6
160	Coulomb explosion of deuterium cationic clusters. Physical Review A, 2003, 68, .	2.5	8
161	Dependence of the π-electron eigenvalue sum on the number of atoms in almost spherical C cages. Physical Review A, 2002, 66, .	2.5	11
162	Complete functional theory for the fermion density of independent particles subject to harmonic confinement inddimensions for an arbitrary number of closed shells. Physical Review A, 2002, 66, .	2.5	23

#	Article	IF	CITATIONS
163	Ten-Electron Central Field Problem: An Inhomogeneous Electron Liquid. Physics and Chemistry of Liquids, 2002, 40, 47-56.	1.2	4
164	WKB Level Spectra in Two Inhomogeneous Electron Liquids: Na Clusters and C Cages. Physics and Chemistry of Liquids, 2002, 40, 123-133.	1.2	0
165	r- andp-space electron densities and related kinetic and exchange energies in terms ofsstates alone for the leading term in the1/Zexpansion for nonrelativistic closed-shell atomic ions. Physical Review A, 2001, 63, .	2.5	15
166	Momentum density and its Fourier transform:â€∫Relation to the first-order density matrix and some scaling properties. Physical Review A, 2001, 64, .	2.5	4
167	Nuclear cusp conditions for components of the molecular energy density relevant for density-functional theory. Physical Review A, 2000, 63, .	2.5	29
168	Nonrelativistic exchange-energy density and exchange potential in the lowest order of the 1/Zexpansion for ten-electron atomic ions. Physical Review A, 2000, 62, .	2.5	20
169	2D/3D Perovskite Heterostructures for High Performance and High Open Circuit Voltage in Wide-Bandgap Perovskite Photovoltaics. , 0, , .		Ο
170	Expanding the Angle of Incidence Tolerance of Unclonable Anticounterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles. Advanced Photonics Research, 0, , 2100202.	3.6	4
171	Charge Carrier and Exciton Dynamics in Perovskites Revealed by Timeâ€Integrated Photoluminescence after Doubleâ€Pulse Excitation. Advanced Materials Technologies, 0, , 2200152.	5.8	2