Edi Barkai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5901306/publications.pdf

Version: 2024-02-01

		236925	254184
53	1,934	25	43
papers	citations	h-index	g-index
			1.405
57	57	57	1485
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plasticity of olfactory bulb inputs mediated by dendritic NMDA-spikes in rodent piriform cortex. ELife, 2021, 10, .	6.0	10
2	Learning-induced enduring changes in inhibitory synaptic transmission in lateral amygdala are mediated by p21-activated kinase. Journal of Neurophysiology, 2020, 123, 178-190.	1.8	2
3	A Cellular Mechanism of Learning-Induced Enhancement of Synaptic Inhibition: PKC-Dependent Upregulation of KCC2 Activation. Scientific Reports, 2020, 10, 962.	3.3	6
4	The Firing of Theta State-Related Septal Cholinergic Neurons Disrupt Hippocampal Ripple Oscillations via Muscarinic Receptors. Journal of Neuroscience, 2020, 40, 3591-3603.	3.6	39
5	A Cellular Mechanism Underlying Enhanced Capability for Complex Olfactory Discrimination Learning. ENeuro, 2019, 6, ENEURO.0198-18.2019.	1.9	10
6	Learning-induced modulation of the effect of endocannabinoids on inhibitory synaptic transmission. Journal of Neurophysiology, 2018, 119, 752-760.	1.8	6
7	A non-synaptic mechanism of complex learning: Modulation of intrinsic neuronal excitability. Neurobiology of Learning and Memory, 2018, 154, 30-36.	1.9	44
8	Tune it in: mechanisms and computational significance of neuron-autonomous plasticity. Journal of Neurophysiology, 2018, 120, 1781-1795.	1.8	5
9	NMDA spikes mediate amplification of inputs in the rat piriform cortex. ELife, 2018, 7, .	6.0	34
10	Real Time Multiplicative Memory Amplification Mediated by Whole-Cell Scaling of Synaptic Response in Key Neurons. PLoS Computational Biology, 2017, 13, e1005306.	3.2	6
11	Physiological expression of olfactory discrimination rule learning balances wholeâ€population modulation and circuit stability in the piriform cortex network. Physiological Reports, 2016, 4, e12830.	1.7	5
12	Calcium/calmodulinâ€dependent kinase II activity is required for maintaining learningâ€induced enhancement of αâ€aminoâ€3â€hydroxyâ€5â€methylâ€4â€isoxazolepropionic acid receptorâ€mediated synaptiexcitation. Journal of Neurochemistry, 2016, 136, 1168-1176.	ic3.9	19
13	Theta Rhythmic Clock-Like Activity of Single Units in the Mouse Hippocampus. Journal of Neuroscience, 2016, 36, 4415-4420.	3.6	7
14	Persistent CaMKII Activation Mediates Learning-Induced Long-Lasting Enhancement of Synaptic Inhibition. Journal of Neuroscience, 2015, 35, 128-139.	3.6	32
15	Differential Modifications of Synaptic Weights During Odor Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and Higher Brain Areas. Cerebral Cortex, 2015, 25, 180-191.	2.9	28
16	Learning-induced modulation of the GABA _B -mediated inhibitory synaptic transmission: mechanisms and functional significance. Journal of Neurophysiology, 2014, 111, 2029-2038.	1.8	14
17	Preface. Progress in Brain Research, 2014, 208, ix-x.	1.4	1
18	Learning-Induced Bidirectional Plasticity of Intrinsic Neuronal Excitability Reflects the Valence of the Outcome. Cerebral Cortex, 2014, 24, 1075-1087.	2.9	39

#	Article	IF	Citations
19	Neural Mechanisms of Odor Rule Learning. Progress in Brain Research, 2014, 208, 253-274.	1.4	9
20	Mechanisms underlying rule learning-induced enhancement of excitatory and inhibitory synaptic transmission. Journal of Neurophysiology, 2012, 107, 1222-1229.	1.8	46
21	Olfactory learning-induced enhancement of the predisposition for LTP induction. Learning and Memory, 2011, 18, 594-597.	1.3	6
22	A Novel Role for Protein Synthesis in Long-Term Neuronal Plasticity: Maintaining Reduced Postburst Afterhyperpolarization. Journal of Neuroscience, 2010, 30, 4338-4342.	3.6	30
23	Learning-induced enhancement of feedback inhibitory synaptic transmission. Learning and Memory, 2009, 16, 413-416.	1.3	37
24	Long-Lasting Maintenance of Learning-Induced Enhanced Neuronal Excitability: Mechanisms and Functional Significance. Molecular Neurobiology, 2009, 39, 171-177.	4.0	34
25	Olfactoryâ€learning abilities are correlated with the rate by which intrinsic neuronal excitability is modulated in the piriform cortex. European Journal of Neuroscience, 2009, 30, 1339-1348.	2.6	15
26	CAMKII Activation Is Not Required for Maintenance of Learning-Induced Enhancement of Neuronal Excitability. PLoS ONE, 2009, 4, e4289.	2.5	8
27	Olfactory learning prevents MK-801-induced psychosis-like behaviour in an animal model of schizophrenia. World Journal of Biological Psychiatry, 2008, 9, 135-146.	2.6	0
28	Persistent ERK activation maintains learning-induced long-lasting modulation of synaptic connectivity. Learning and Memory, 2008, 15, 756-761.	1.3	12
29	Olfactory Learning-Induced Long-Lasting Enhancement of Descending and Ascending Synaptic Transmission to the Piriform Cortex. Journal of Neuroscience, 2008, 28, 6664-6669.	3.6	64
30	A Novel Role for Extracellular Signal-Regulated Kinase in Maintaining Long-Term Memory-Relevant Excitability Changes. Journal of Neuroscience, 2007, 27, 12584-12589.	3.6	55
31	Learningâ€induced modulation of SK channelsâ€mediated effect on synaptic transmission. European Journal of Neuroscience, 2007, 26, 3253-3260.	2.6	18
32	Learning-Induced Reversal of the Effect of Noradrenalin on the Postburst AHP. Journal of Neurophysiology, 2006, 96, 1728-1733.	1.8	31
33	A Cellular Correlate of Learning-induced Metaplasticity in the Hippocampus. Cerebral Cortex, 2006, 16, 460-468.	2.9	112
34	Learning in the absence of experience-dependent regulation of NMDAR composition. Learning and Memory, 2006, 13, 566-570.	1.3	18
35	Dynamics of olfactory learning-induced up-regulation of L1 in the piriform cortex and hippocampus. European Journal of Neuroscience, 2005, 21, 581-586.	2.6	6
36	Dynamics of learning-induced spine redistribution along dendrites of pyramidal neurons in rats. European Journal of Neuroscience, 2005, 21, 927-935.	2.6	35

#	Article	IF	Citations
37	Olfactory learning-induced morphological modifications in single dendritic spines of young rats. European Journal of Neuroscience, 2005, 21, 2217-2226.	2.6	22
38	Olfactory learning-related NCAM expression is state, time, and location specific and is correlated with individual learning capabilities. Hippocampus, 2005, 15, 316-325.	1.9	26
39	Dynamics of learning-induced cellular modifications in the cortex. Biological Cybernetics, 2005, 92, 360-366.	1.3	23
40	Learning-Induced Long-Term Synaptic Modifications in the Olfactory Cortex. Current Neurovascular Research, 2004, 1, 389-395.	1.1	11
41	Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons. Hippocampus, 2004, 14, 819-825.	1.9	59
42	A Molecular Mechanism for Stabilization of Learning-Induced Synaptic Modifications. Neuron, 2004, 41, 185-192.	8.1	145
43	Long-term modifications in intrinsic neuronal properties and rule learning in rats. European Journal of Neuroscience, 2003, 17, 2727-2734.	2.6	102
44	Learning-Induced Enhancement of Postsynaptic Potentials in Pyramidal Neurons. Journal of Neurophysiology, 2002, 87, 2358-2363.	1.8	65
45	SHORT COMMUNICATION Learning-induced reduction in post-burst after-hyperpolarization (AHP) is mediated by activation of PKC. European Journal of Neuroscience, 2002, 16, 965-969.	2.6	35
46	Long-Lasting Cholinergic Modulation Underlies Rule Learning in Rats. Journal of Neuroscience, 2001, 21, 1385-1392.	3.6	107
47	Olfactory learning is associated with increased spine density along apical dendrites of pyramidal neurons in the rat piriform cortex. European Journal of Neuroscience, 2001, 13, 633-638.	2.6	89
48	Cellular Correlates of Olfactory Learning in the Rat Piriform Cortex. Reviews in the Neurosciences, 2001, 12, 111-20.	2.9	61
49	Reduced Synaptic Facilitation between Pyramidal Neurons in the Piriform Cortex After Odor Learning. Journal of Neuroscience, 1999, 19, 8616-8622.	3.6	87
50	Reduced after-hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning. European Journal of Neuroscience, 1998, 10, 1518-1523.	2.6	185
51	Acetylcholine and associative memory in the piriform cortex. Molecular Neurobiology, 1997, 15, 17-29.	4.0	61
52	High CO2-bicarbonate buffer modifies GABAergic inhibitory effect at the crayfish neuromuscular synapse. Brain Research, 1991, 567, 149-152.	2.2	3
53	Pentylenetetrazole-induced kindling is prevented by prior treatment with cysteamine. European Journal of Pharmacology, 1990, 182, 167-169.	3.5	6