List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5900495/publications.pdf Version: 2024-02-01

	ARTICLE	IF	CITATIONS
1	High-density genetic map and genome-wide association studies of aesthetic traits in Phalaenopsis orchids. Scientific Reports, 2022, 12, 3346.	3.3	6
2	Develop an efficient inoculation technique for Fusarium solani isolate "TJP-2178-10―pathogeny assessment in Phalaenopsis orchids. , 2021, 62, 4.		2
3	Evolution of Terpene Synthases in Orchidaceae. International Journal of Molecular Sciences, 2021, 22, 6947.	4.1	19
4	Terpene Synthase-b and Terpene Synthase-e/f Genes Produce Monoterpenes for Phalaenopsis bellina Floral Scent. Frontiers in Plant Science, 2021, 12, 700958.	3.6	13
5	OrchidBase 4.0: a database for orchid genomics and molecular biology. BMC Plant Biology, 2021, 21, 371.	3.6	10
6	Identification of high-copy number long terminal repeat retrotransposons and their expansion in Phalaenopsis orchids. BMC Genomics, 2020, 21, 807.	2.8	5
7	Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biology, 2020, 20, 212.	3.6	22
8	PeERF1, a SHINE-Like Transcription Factor, Is Involved in Nanoridge Development on Lip Epidermis of Phalaenopsis Flowers. Frontiers in Plant Science, 2020, 10, 1709.	3.6	6
9	RNA sequencing analysis of Cymbidium goeringii identifies floral scent biosynthesis related genes. BMC Plant Biology, 2019, 19, 337.	3.6	35
10	Chemical Constituents From <i>Phalaenopsis</i> Hybrids and Their Bioactivities. Natural Product Communications, 2019, 14, 1934578X1985068.	0.5	3
11	A <i>HORT1</i> Retrotransposon Insertion in the <i>PeMYB11</i> Promoter Causes Harlequin/Black Flowers in <i>Phalaenopsis</i> Orchids. Plant Physiology, 2019, 180, 1535-1548.	4.8	34
12	PePIF1, a P-lineage of PIF-like transposable element identified in protocorm-like bodies of Phalaenopsis orchids. BMC Genomics, 2019, 20, 25.	2.8	6
13	PbbHLH4 regulates floral monoterpene biosynthesis in Phalaenopsis orchids. Journal of Experimental Botany, 2018, 69, 4363-4377.	4.8	66
14	A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids. Frontiers in Plant Science, 2018, 9, 765.	3.6	13
15	Flower Development of Phalaenopsis Orchids Involves Functionally Divergent B-Class and E-Class MADS-Box Genes. , 2017, , 251-288.		1
16	Application of VIGS to Floral Gene Function Studies of the Orchid, a Nonmodel Plant. , 2017, , 341-372.		0
17	Flower Color and Pigmentation Patterns in <i>Phalaenopsis</i> Orchids. , 2017, , 393-420.		4

18 Post genomics era for orchid research. , 2017, 58, 61.

#	Article	IF	CITATIONS
19	Diurnal regulation of the floral scent emission by light and circadian rhythm in the Phalaenopsis orchids. , 2017, 58, 50.		31
20	Three R2R3-MYB Transcription Factors Regulate Distinct Floral Pigmentation Patterning in <i>Phalaenopsis</i> spp. Â. Plant Physiology, 2015, 168, 175-191.	4.8	156
21	The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47, 65-72.	21.4	413
22	Flower development of <i>Phalaenopsis</i> orchid involves functionally divergent <i><scp>SEPALLATA</scp></i> â€like genes. New Phytologist, 2014, 202, 1024-1042.	7.3	113
23	Histone Acetylation Accompanied with Promoter Sequences Displaying Differential Expression Profiles of B-Class MADS-Box Genes for Phalaenopsis Floral Morphogenesis. PLoS ONE, 2014, 9, e106033.	2.5	24
24	The NPR1 ortholog PhaNPR1 is required for the induction of PhaPR1 in Phalaenopsis aphrodite. , 2013, 54, 31.		18
25	OrchidBase 2.0: Comprehensive Collection of Orchidaceae Floral Transcriptomes. Plant and Cell Physiology, 2013, 54, e7-e7.	3.1	76
26	Transcriptomic analysis of floral organs from Phalaenopsis orchid by using oligonucleotide microarray. Gene, 2013, 518, 91-100.	2.2	17
27	Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Science, 2013, 201-202, 25-41.	3.6	47
28	Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. Journal of Experimental Botany, 2013, 64, 3869-3884.	4.8	38
29	An efficient RNA interference screening strategy for gene functional analysis. BMC Genomics, 2012, 13, 491.	2.8	16
30	A High-Throughput Virus-Induced Gene-Silencing Vector for Screening Transcription Factors in Virus-Induced Plant Defense Response in Orchid. Molecular Plant-Microbe Interactions, 2012, 25, 738-746.	2.6	42
31	OrchidBase: A Collection of Sequences of the Transcriptome Derived from Orchids. Plant and Cell Physiology, 2011, 52, 238-243.	3.1	78
32	Research on Orchid Biology and Biotechnology. Plant and Cell Physiology, 2011, 52, 1467-1486.	3.1	101
33	Biosynthetic Regulation of Floral Scent in Phalaenopsis. , 2011, , 145-180.		1
34	The Relationship Between Ethylene and Orchid Ovule Development. , 2011, , 229-251.		0
35	Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferase gene alters flower coloring in Phalaenopsis. Plant Cell Reports, 2011, 30, 1007-1017.	5.6	58
36	An overview of the Phalaenopsisorchid genome through BAC end sequence analysis. BMC Plant Biology, 2011, 11, 3.	3.6	51

#	Article	IF	CITATIONS
37	Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids. BMC Genomics, 2011, 12, 360.	2.8	50
38	The Duplicated B-class MADS-Box Genes Display Dualistic Characters in Orchid Floral Organ Identity and Growth. Plant and Cell Physiology, 2011, 52, 1515-1531.	3.1	89
39	The Early Gene <i>hhi1</i> Reactivates <i>Heliothis zea</i> Nudivirus 1 in Latently Infected Cells. Journal of Virology, 2010, 84, 1057-1065.	3.4	20
40	Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genetics and Molecular Research, 2010, 9, 1085-1093.	0.2	57
41	Functional role of a non-active site residue Trp23 on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1467-1473.	2.3	12
42	A novel homodimeric geranyl diphosphate synthase from the orchid <i>Phalaenopsis bellina</i> lacking a DD(<i>X</i>) _{2–4} D motif. Plant Journal, 2008, 55, 719-733.	5.7	86
43	The role of ethylene in orchid ovule development. Plant Science, 2008, 175, 98-105.	3.6	40
44	Differential gene expression analysis by cDNA-AFLP between flower buds of Phalaenopsis Hsiang Fei cv. H. F. and its somaclonal variant. Plant Science, 2008, 175, 415-422.	3.6	18
45	Molecular Biology of Orchid Flowers. Advances in Botanical Research, 2008, 47, 99-145.	1.1	17
46	Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant and Cell Physiology, 2008, 49, 814-824.	3.1	57
47	Strategies for Functional Validation of Genes Involved in Reproductive Stages of Orchids. Plant Physiology, 2007, 143, 558-569.	4.8	97
48	Analysis of Expression of Phalaenopsis Floral ESTs. , 2007, , 145-161.		3
49	Orchid MADS-Box Genes Controlling Floral Morphogenesis. , 2007, , 163-183.		2
50	Application of Virus-induced Gene Silencing Technology in Gene Functional Validation of Orchids. , 2007, , 211-223.		3
51	Expression analysis of the ESTs derived from the flower buds of Phalaenopsis equestris. Plant Science, 2006, 170, 426-432.	3.6	43
52	The Orchid MADS-Box Genes Controlling Floral Morphogenesis. Scientific World Journal, The, 2006, 6, 1933-1944.	2.1	34
53	AFLP fingerprinting and conversion to sequence-tag site markers for the identification of <i>Oncidium</i> cultivars. Journal of Horticultural Science and Biotechnology, 2006, 81, 791-796.	1.9	7
54	An integrated map of Oryza sativa L. chromosome 5. Theoretical and Applied Genetics, 2006, 112, 891-902.	3.6	27

#	Article	IF	CITATIONS
55	Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway. BMC Plant Biology, 2006, 6, 14.	3.6	83
56	The Chloroplast Genome of Phalaenopsis aphrodite (Orchidaceae): Comparative Analysis of Evolutionary Rate with that of Grasses and Its Phylogenetic Implications. Molecular Biology and Evolution, 2006, 23, 279-291.	8.9	301
57	KSPF: using gene sequence patterns and data mining for biological knowledge management. Expert Systems With Applications, 2005, 28, 537-545.	7.6	11
58	A fine physical map of the rice chromosome 5. Molecular Genetics and Genomics, 2005, 274, 337-345.	2.1	14
59	Osmotic sucrose enhancement of single-cell embryogenesis and transformation efficiency in Oncidium. Plant Cell, Tissue and Organ Culture, 2005, 81, 183-192.	2.3	34
60	PeMADS6, a GLOBOSA/PISTILLATA-like Gene in Phalaenopsis equestris Involved in Petaloid Formation, and Correlated with Flower Longevity and Ovary Development. Plant and Cell Physiology, 2005, 46, 1125-1139.	3.1	118
61	Four DEF-Like MADS Box Genes Displayed Distinct Floral Morphogenetic Roles in Phalaenopsis Orchid. Plant and Cell Physiology, 2004, 45, 831-844.	3.1	154
62	Analysis of the Complete Genome Sequence of the Hz-1 Virus Suggests that It Is Related to Members of the <i>Baculoviridae</i> . Journal of Virology, 2002, 76, 9024-9034.	3.4	74
63	The thymidylate synthase gene of Hz-1 virus: A gene captured from its lepidopteran host. Insect Molecular Biology, 2001, 10, 495-503.	2.0	8
64	Negative regulatory regions of the PAT1 promoter of Hz-1 virus contain GATA elements which associate with cellular factors and regulate promoter activity. Journal of General Virology, 2001, 82, 313-320.	2.9	2
65	Alpha-tocopherol downregulates the expression of GPIIb promoter in HEL cells. Free Radical Biology and Medicine, 2000, 28, 202-207.	2.9	13
66	Vitamin B6 Down-Regulates the Expression of Human GPIIb Gene Journal of Nutritional Science and Vitaminology, 1999, 45, 471-479.	0.6	11
67	A 2.9-Kilobase Noncoding Nuclear RNA Functions in the Establishment of Persistent Hz-1 Viral Infection. Journal of Virology, 1998, 72, 2233-2245.	3.4	35
68	Persistent Baculovirus Infection Results from Deletion of the Apoptotic Suppressor Gene p35. Journal of Virology, 1998, 72, 9157-9165.	3.4	27