List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5899724/publications.pdf Version: 2024-02-01

		7096	6471
331	28,076	78	157
papers	citations	h-index	g-index
341	341	341	29288
all docs	docs citations	times ranked	citing authors

VINC IAN CHEN

#	Article	IF	CITATIONS
1	Hydrogen evolution by a metal-free electrocatalyst. Nature Communications, 2014, 5, 3783.	12.8	1,851
2	High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy and Environmental Science, 2011, 4, 760.	30.8	1,153
3	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	13.7	1,094
4	Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 5290-5296.	14.6	947
5	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 16174-16181.	13.7	852
6	Porous boron nitride nanosheets for effective water cleaning. Nature Communications, 2013, 4, 1777.	12.8	831
7	Boron nitride nanotubes: Pronounced resistance to oxidation. Applied Physics Letters, 2004, 84, 2430-2432.	3.3	785
8	Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nature Communications, 2015, 6, 8849.	12.8	658
9	Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano, 2014, 8, 1457-1462.	14.6	633
10	Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nature Communications, 2017, 8, 15815.	12.8	576
11	Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 2014, 8, 6856-6862.	14.6	519
12	Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Scientific Reports, 2014, 4, 4375.	3.3	458
13	Ball-milling-induced amorphization inNixZrycompounds: A parametric study. Physical Review B, 1993, 48, 14-21.	3.2	403
14	Atomically Thin Boron Nitride: Unique Properties and Applications. Advanced Functional Materials, 2016, 26, 2594-2608.	14.9	400
15	Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling. Journal of Materials Chemistry, 2011, 21, 11862.	6.7	373
16	Tin-based composite anodes for potassium-ion batteries. Chemical Communications, 2016, 52, 9279-9282.	4.1	356
17	High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Science Advances, 2019, 5, eaav0129.	10.3	308
18	Potassiumâ€lon Battery Anode Materials Operating through the Alloying–Dealloying Reaction Mechanism. Advanced Functional Materials, 2018, 28, 1703857.	14.9	305

#	Article	IF	CITATIONS
19	Charge-Controlled Switchable CO ₂ Capture on Boron Nitride Nanomaterials. Journal of the American Chemical Society, 2013, 135, 8246-8253.	13.7	293
20	Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chemical Physics Letters, 1999, 299, 260-264.	2.6	267
21	Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 5572-5584.	10.3	241
22	High capacity potassium-ion battery anodes based on black phosphorus. Journal of Materials Chemistry A, 2017, 5, 23506-23512.	10.3	232
23	Anode Improvement in Rechargeable Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1700542.	21.0	225
24	A solid-state process for formation of boron nitride nanotubes. Applied Physics Letters, 1999, 74, 2960-2962.	3.3	222
25	Oxygen-doped boron nitride nanosheets with excellent performance in hydrogen storage. Nano Energy, 2014, 6, 219-224.	16.0	210
26	Dumbbell‣haped Biâ€component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie - International Edition, 2017, 56, 8459-8463.	13.8	204
27	Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long‣ife Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602380.	19.5	201
28	Nanocrystalline SnS ₂ coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chemical Communications, 2017, 53, 8272-8275.	4.1	197
29	High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers. Journal of the American Chemical Society, 2017, 139, 6314-6320.	13.7	193
30	BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications. ACS Applied Materials & Interfaces, 2017, 9, 43163-43170.	8.0	190
31	Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials. Nanoscale, 2014, 6, 13740-13747.	5.6	183
32	K-ion and Na-ion storage performances of Co ₃ O ₄ –Fe ₂ O ₃ nanoparticle-decorated super P carbon black prepared by a ball milling process. Nanoscale, 2017, 9, 3646-3654.	5.6	176
33	Porous Boron Carbon Nitride Nanosheets as Efficient Metal-Free Catalysts for the Oxygen Reduction Reaction in Both Alkaline and Acidic Solutions. ACS Energy Letters, 2017, 2, 306-312.	17.4	176
34	Lithium-ion capacitors with 2D Nb2CTx (MXene) – carbon nanotube electrodes. Journal of Power Sources, 2016, 326, 686-694.	7.8	175
35	Dots versus Antidots: Computational Exploration of Structure, Magnetism, and Half-Metallicity in Boronâ^'Nitride Nanostructures. Journal of the American Chemical Society, 2009, 131, 17354-17359.	13.7	174
36	Nanopatterning and Electrical Tuning of MoS ₂ Layers with a Subnanometer Helium Ion Beam. Nano Letters, 2015, 15, 5307-5313.	9.1	171

#	Article	IF	CITATIONS
37	Structure and Capacitive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V ₂ O ₅ . Chemistry of Materials, 2010, 22, 914-921.	6.7	161
38	Disorder in ball-milled graphite revealed by Raman spectroscopy. Carbon, 2013, 57, 515-519.	10.3	158
39	Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultraâ€Stable Anodes of Lithiumâ€Metal Batteries. Advanced Functional Materials, 2018, 28, 1803023.	14.9	156
40	Ball milling: a green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles. Nanoscale, 2013, 5, 7970.	5.6	149
41	Nanoporous carbon produced by ball milling. Applied Physics Letters, 1999, 74, 2782-2784.	3.3	148
42	Electrochemical investigation of sodium reactivity with nanostructured Co ₃ O ₄ for sodium-ion batteries. Chemical Communications, 2014, 50, 5057-5060.	4.1	145
43	Boron Nitride Nanosheets for Metal Protection. Advanced Materials Interfaces, 2014, 1, 1300132.	3.7	141
44	Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9, 3059-3067.	5.6	141
45	Formation of metal hydrides by mechanical alloying. Journal of Alloys and Compounds, 1995, 217, 181-184.	5.5	135
46	High-Efficient Production of Boron Nitride Nanosheets via an Optimized Ball Milling Process for Lubrication in Oil. Scientific Reports, 2014, 4, 7288.	3.3	132
47	Sulfurâ€Impregnated, Sandwichâ€Type, Hybrid Carbon Nanosheets with Hierarchical Porous Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2014, 4, 1301988.	19.5	130
48	Dielectric Screening in Atomically Thin Boron Nitride Nanosheets. Nano Letters, 2015, 15, 218-223.	9.1	129
49	MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 9350.	6.7	127
50	Superhydrophobic and Superoleophilic Porous Boron Nitride Nanosheet/Polyvinylidene Fluoride Composite Material for Oilâ€Polluted Water Cleanup. Advanced Materials Interfaces, 2015, 2, 1400267.	3.7	125
51	A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 15343-15352.	10.3	120
52	Highly Compressive Boron Nitride Nanotube Aerogels Reinforced with Reduced Graphene Oxide. ACS Nano, 2019, 13, 7402-7409.	14.6	115
53	Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. Chemical Communications, 2021, 57, 1080-1092.	4.1	112
54	Porous poly(vinylidene fluoride) membrane with highly hydrophobic surface. Journal of Applied Polymer Science, 2005, 98, 1358-1363.	2.6	111

#	Article	IF	CITATIONS
55	Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities. Chemical Communications, 2013, 49, 352-354.	4.1	110
56	Highly Crumpled Boron Nitride Nanosheets as Adsorbents: Scalable Solventâ€Less Production. Advanced Materials Interfaces, 2015, 2, 1400529.	3.7	108
57	Superhydrophobic and Superoleophilic Boron Nitride Nanotubeâ€Coated Stainless Steel Meshes for Oil and Water Separation. Advanced Materials Interfaces, 2014, 1, 1300002.	3.7	107
58	C-BN Single-Walled Nanotubes from Hybrid Connection of BN/C Nanoribbons: Prediction by <i>ab initio</i> Density Functional Calculations. Journal of the American Chemical Society, 2009, 131, 1682-1683.	13.7	106
59	Multifunctional Polymer/Porous Boron Nitride Nanosheet Membranes for Superior Trapping Emulsified Oils and Organic Molecules. Advanced Materials Interfaces, 2015, 2, 1500228.	3.7	106
60	Superhydrophobic Properties of Nonaligned Boron Nitride Nanotube Films. Langmuir, 2010, 26, 5135-5140.	3.5	102
61	Large-quantity production of high-yield boron nitride nanotubes. Journal of Materials Research, 2002, 17, 1896-1899.	2.6	101
62	Biocompatibility of boron nitride nanosheets. Nano Research, 2018, 11, 334-342.	10.4	98
63	Improving thermal conductivity of polymer composites by reducing interfacial thermal resistance between boron nitride nanotubes. Composites Science and Technology, 2018, 165, 322-330.	7.8	98
64	Ultra-micro-indentation of silicon and compound semiconductors with spherical indenters. Journal of Materials Research, 1999, 14, 2338-2343.	2.6	94
65	Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 15424-15446.	3.7	94
66	Stable anode performance of an Sb–carbon nanocomposite in lithium-ion batteries and the effect of ball milling mode in the course of its preparation. Journal of Materials Chemistry A, 2014, 2, 4282.	10.3	92
67	Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water. Scientific Reports, 2014, 4, 4453.	3.3	91
68	High-performance lithium ion batteries using SiO 2 -coated LiNi 0.5 Co 0.2 Mn 0.3 O 2 microspheres as cathodes. Journal of Alloys and Compounds, 2017, 709, 708-716.	5.5	90
69	In-situ and tunable nitrogen-doping of MoS2 nanosheets. Scientific Reports, 2014, 4, 7582.	3.3	89
70	Flower stamen-like porous boron carbon nitride nanoscrolls for water cleaning. Nanoscale, 2017, 9, 9787-9791.	5.6	89
71	Boron Nitride Nanotubes: A Novel Vector for Targeted Magnetic Drug Delivery. Current Nanoscience, 2009, 5, 33-38.	1.2	87
72	First principle studies of zigzag AlN nanoribbon. Chemical Physics Letters, 2009, 469, 183-185.	2.6	86

#	Article	IF	CITATIONS
73	Porous BN/TiO2 hybrid nanosheets as highly efficient visible-light-driven photocatalysts. Applied Catalysis B: Environmental, 2017, 207, 72-78.	20.2	86
74	Amineâ€Functionalized Boron Nitride Nanosheets: A New Functional Additive for Robust, Flexible Ion Gel Electrolyte with High Lithiumâ€Ion Transference Number. Advanced Functional Materials, 2020, 30, 1910813.	14.9	86
75	Photoluminescence of boron nitride nanosheets exfoliated by ball milling. Applied Physics Letters, 2012, 100, .	3.3	84
76	High temperature and high rate lithium-ion batteries with boron nitride nanotubes coated polypropylene separators. Energy Storage Materials, 2019, 19, 352-359.	18.0	82
77	Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices. Journal of the American Chemical Society, 2009, 131, 1796-1801.	13.7	80
78	MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Materials Letters, 2012, 66, 102-105.	2.6	80
79	Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Analytica Chimica Acta, 2013, 803, 128-134.	5.4	80
80	Ex situ electrochemical sodiation/desodiation observation of Co ₃ O ₄ anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid. Nanoscale, 2015, 7, 13088-13095.	5.6	80
81	Single layer lead iodide: computational exploration of structural, electronic and optical properties, strain induced band modulation and the role of spin–orbital-coupling. Nanoscale, 2015, 7, 15168-15174.	5.6	80
82	Superior adsorption of pharmaceutical molecules by highly porous BN nanosheets. Physical Chemistry Chemical Physics, 2016, 18, 84-88.	2.8	80
83	Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 15349.	2.8	79
84	In Situ Formation of BN Nanotubes during Nitriding Reactions. Chemistry of Materials, 2005, 17, 5172-5176.	6.7	78
85	Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties. European Polymer Journal, 2018, 104, 57-63.	5.4	78
86	Bulk Hexagonal Boron Nitride with a Quasiâ€Isotropic Thermal Conductivity. Advanced Functional Materials, 2018, 28, 1707556.	14.9	78
87	First-principles investigation of L10-disorder phase equilibria of Fe–Ni, –Pd, and –Pt binary alloy systems. Journal of Alloys and Compounds, 2004, 383, 23-31.	5.5	77
88	A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage. Journal of Materials Chemistry A, 2013, 1, 11019.	10.3	77
89	Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Communications, 2009, 149, 763-766.	1.9	75
90	Large-scale synthesis of hexagonal corundum-type In2O3 by ball milling with enhanced lithium storage capabilities. Journal of Materials Chemistry A, 2013, 1, 5274.	10.3	75

#	Article	IF	CITATIONS
91	Euâ€doped Boron Nitride Nanotubes as a Nanometerâ€Sized Visibleâ€Light Source. Advanced Materials, 2007, 19, 1845-1848.	21.0	74
92	Controlled surface modification of boron nitride nanotubes. Nanotechnology, 2011, 22, 245301.	2.6	74
93	Controlling Wettability of Boron Nitride Nanotube Films and Improved Cell Proliferation. Journal of Physical Chemistry C, 2012, 116, 18334-18339.	3.1	73
94	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 8405-8409.	13.8	73
95	A Review of Advanced Flexible Lithiumâ€ion Batteries. Advanced Materials Technologies, 2018, 3, 1700375.	5.8	73
96	Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes. Electrochemistry Communications, 2005, 7, 1457-1462.	4.7	72
97	Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 574, 149-156.	5.6	72
98	Subnanometer Molybdenum Sulfide on Carbon Nanotubes as a Highly Active and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 3543-3550.	8.0	72
99	A model for the growth of bamboo and skeletal nanotubes: catalytic capillarity. Journal of Crystal Growth, 2002, 240, 164-169.	1.5	67
100	Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by a low-energy ball milling. Journal of Power Sources, 2015, 282, 462-470.	7.8	67
101	Nanotube growth by surface diffusion. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 401-405.	2.1	65
102	Anticorrosive and UV-blocking waterborne polyurethane composite coating containing novel two-dimensional Ti3C2 MXene nanosheets. Journal of Materials Science, 2021, 56, 4212-4224.	3.7	65
103	Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 206, 24-29.	5.6	64
104	Enhanced electrochemical performance of ZrO2 modified LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries. Ceramics International, 2017, 43, 15173-15178.	4.8	64
105	Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 30152-30164.	8.0	63
106	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. Journal of Materials Chemistry A, 2018, 6, 8280-8288.	10.3	62
107	Boron nitride nanotube films grown from boron ink painting. Journal of Materials Chemistry, 2010, 20, 9679.	6.7	61
108	Boron nitride nanosheets as improved and reusable substrates for gold nanoparticles enabled surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 7761-7766.	2.8	61

#	Article	IF	CITATIONS
109	Synthesis of boron nitride nanotubes by boron ink annealing. Nanotechnology, 2010, 21, 105601.	2.6	59
110	Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy, 2018, 47, 368-373.	16.0	57
111	Highâ€Quality Boron Nitride Nanoribbons: Unzipping during Nanotube Synthesis. Angewandte Chemie - International Edition, 2013, 52, 4212-4216.	13.8	56
112	Tuning active sites on cobalt/nitrogen doped graphene for electrocatalytic hydrogen and oxygen evolution. Electrochimica Acta, 2018, 265, 497-506.	5.2	56
113	Purification of boron nitride nanotubes. Chemical Physics Letters, 2006, 425, 315-319.	2.6	55
114	Advanced N-doped mesoporous molybdenum disulfide nanosheets and the enhanced lithium-ion storage performance. Journal of Materials Chemistry A, 2016, 4, 1440-1445.	10.3	55
115	Highly efficient oxygen evolution from CoS ₂ /CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale, 2017, 9, 6886-6894.	5.6	55
116	All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Materials, 2018, 10, 24-31.	18.0	55
117	Enhanced lithium storage in Fe2O3–SnO2–C nanocomposite anode with a breathable structure. Nanoscale, 2013, 5, 4910.	5.6	54
118	Boron Nitride Nanosheet-Veiled Gold Nanoparticles for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2016, 8, 15630-15636.	8.0	54
119	An Ultra-Long-Life Flexible Lithium–Sulfur Battery with Lithium Cloth Anode and Polysulfone-Functionalized Separator. ACS Nano, 2021, 15, 1358-1369.	14.6	53
120	A Novel Approach for Real Mass Transformation from V ₂ O ₅ Particles to Nanorods. Crystal Growth and Design, 2008, 8, 3661-3665.	3.0	52
121	Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. Applied Physics Letters, 2008, 92, 102515.	3.3	52
122	Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Scientific Reports, 2016, 6, 35532.	3.3	52
123	Challenges and solutions in surface engineering and assembly of boron nitride nanosheets. Materials Today, 2021, 44, 194-210.	14.2	52
124	Isotopically Enriched10BN Nanotubes. Advanced Materials, 2006, 18, 2157-2160.	21.0	51
125	Over 1.0mm-long boron nitride nanotubes. Chemical Physics Letters, 2008, 463, 130-133.	2.6	51
126	One-dimensional nanomaterials synthesized using high-energy ball milling and annealing process. Science and Technology of Advanced Materials, 2006, 7, 839-846.	6.1	50

#	Article	IF	CITATIONS
127	Light emission and excitonic effect of boron nitride nanotubes observed by photoluminescent spectra. Optical Materials, 2007, 29, 1295-1298.	3.6	50
128	llmenite FeTiO ₃ Nanoflowers and Their Pseudocapacitance. Journal of Physical Chemistry C, 2011, 115, 17297-17302.	3.1	50
129	Maricite NaFePO ₄ /C/graphene: a novel hybrid cathode for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 16616-16621.	10.3	50
130	Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth. Nanoscale Research Letters, 2012, 7, 417.	5.7	49
131	Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. Journal of Power Sources, 2019, 413, 476-484.	7.8	49
132	Carbon nanotubes formed in graphite after mechanical grinding and thermal annealing. Applied Physics A: Materials Science and Processing, 2003, 76, 633-636.	2.3	48
133	Electrochemical capacitance of mesoporous tungsten oxynitride in aqueous electrolytes. Journal of Power Sources, 2012, 220, 298-305.	7.8	48
134	The nucleation and growth of carbon nanotubes in a mechano-thermal process. Carbon, 2004, 42, 1543-1548.	10.3	47
135	Insight into reactions and interface between boron nitride nanotube and aluminum. Journal of Materials Research, 2012, 27, 2760-2770.	2.6	47
136	Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210.	14.9	47
137	Reactive ball milling to produce nanocrystalline ZnO. Materials Letters, 2008, 62, 4047-4049.	2.6	46
138	Boron nitride nanotube reinforced polyurethane composites. Progress in Natural Science: Materials International, 2013, 23, 170-173.	4.4	46
139	Lithium ferrite (Li _{0.5} Fe _{2.5} O ₄) nanoparticles as anodes for lithium ion batteries. RSC Advances, 2014, 4, 23145-23148.	3.6	46
140	First-principles study for ordering and phase separation in the Fe-Pd system. Journal of Physics Condensed Matter, 2002, 14, 1903-1913.	1.8	45
141	One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH ₃ and CO ₂ adsorption. Nanoscale, 2018, 10, 10979-10985.	5.6	45
142	Single deep ultraviolet light emission from boron nitride nanotube film. Applied Physics Letters, 2010, 97, .	3.3	44
143	Pure boron nitride nanowires produced from boron triiodide. Nanotechnology, 2006, 17, 786-789.	2.6	42
144	Humidity sensing properties of single Au-decorated boron nitride nanotubes. Electrochemistry Communications, 2013, 30, 29-33.	4.7	40

#	Article	IF	CITATIONS
145	Selective Oxidation Synthesis of MnCr ₂ O ₄ Spinel Nanowires from Commercial Stainless Steel Foil. Crystal Growth and Design, 2007, 7, 2279-2281.	3.0	39
146	Formation of defects in boron nitride by low energy ion bombardment. Journal of Applied Physics, 2009, 106, .	2.5	39
147	Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1841-1846.	2.5	39
148	Hydrangea-like multi-scale carbon hollow submicron spheres with hierarchical pores for high performance supercapacitor electrodes. Electrochimica Acta, 2015, 176, 207-214.	5.2	39
149	High N-content holey few-layered graphene electrocatalysts: scalable solvent-less production. Journal of Materials Chemistry A, 2015, 3, 1682-1687.	10.3	39
150	Boron Radicals Identified as the Source of the Unexpected Catalysis by Boron Nitride Nanosheets. ACS Nano, 2019, 13, 1394-1402.	14.6	39
151	Increased dissolution of ilmenite induced by high-energy ball milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 271, 485-490.	5.6	38
152	Conical Boron Nitride Nanorods Synthesized Via the Ball-Milling and Annealing Method. Journal of the American Ceramic Society, 2006, 89, 675-679.	3.8	38
153	Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology, 2007, 18, 175604.	2.6	38
154	Advances in synthesis and applications of boron nitride nanotubes: A review. Chemical Engineering Journal, 2022, 431, 134118.	12.7	38
155	Synthesis of boron nitride nanotubes, bamboos and nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2513-2516.	2.7	37
156	Titanium Dioxide Nanotube Films for Electrochemical Supercapacitors: Biocompatibility and Operation in an Electrolyte Based on a Physiological Fluid. Journal of the Electrochemical Society, 2015, 162, A5065-A5069.	2.9	37
157	Understanding Structure–Function Relationship in Hybrid Co ₃ O ₄ –Fe ₂ O ₃ /C Lithium-Ion Battery Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 20736-20744.	8.0	37
158	Three-Dimensional Functionalized Boron Nitride Nanosheets/ZnO Superstructures for CO ₂ Capture. ACS Applied Materials & Interfaces, 2019, 11, 10276-10282.	8.0	37
159	Controlled growth of zinc nanowires. Materials Letters, 2007, 61, 144-147.	2.6	36
160	Divacancy-assisted transition metal adsorption on the BN graphene and its interaction with hydrogen molecules: a theoretical study. Applied Surface Science, 2013, 273, 293-301.	6.1	36
161	Bimetallic molybdenum tungsten oxynitride: structure and electrochemical properties. Journal of Materials Chemistry A, 2013, 1, 7889.	10.3	36
162	Porous carbon nanotube/polyvinylidene fluoride composite material: Superhydrophobicity/superoleophilicity and tunability of electrical conductivity. Polymer, 2014, 55, 5616-5622.	3.8	36

#	Article	lF	CITATIONS
163	Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature. Journal of Alloys and Compounds, 1997, 257, 156-160.	5.5	35
164	Nanotube growth during annealing of mechanically milled Boron. Applied Physics A: Materials Science and Processing, 2003, 76, 107-110.	2.3	35
165	Synthesis of Composite Nanosheets of Graphene and Boron Nitride and Their Lubrication Application in Oil. Advanced Engineering Materials, 2018, 20, 1700488.	3.5	35
166	Dumbbell‣haped Bi omponent Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie, 2017, 129, 8579-8583.	2.0	34
167	Hierarchical Porous Yolk–Shell Carbon Nanosphere for Highâ€Performance Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2017, 34, 1600281.	2.3	34
168	A Selfâ€Healing Amalgam Interface in Metal Batteries. Advanced Materials, 2020, 32, e2004798.	21.0	34
169	An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology, 2006, 17, 2942-2946.	2.6	32
170	Inquisition of Microcystis aeruginosa and Synechocystis nanowires: characterization and modelling. Antonie Van Leeuwenhoek, 2015, 108, 1213-1225.	1.7	32
171	Impact of size on energy storage performance of graphene based supercapacitor electrode. Electrochimica Acta, 2016, 219, 463-469.	5.2	32
172	Lithium Germanate (Li ₂ GeO ₃): A Highâ€Performance Anode Material for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 16059-16063.	13.8	32
173	Repelling Polysulfide Ions by Boron Nitride Nanosheet Coated Separators in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 2620-2628.	5.1	32
174	Half metallicty in finite-length zigzag single walled carbon nanotube: A first-principle prediction. Applied Physics Letters, 2008, 93, 073101.	3.3	31
175	Excellent electrochemical performance of LiFe _{0.4} Mn _{0.6} PO ₄ microspheres produced using a double carbon coating process. Journal of Materials Chemistry A, 2014, 2, 18831-18837.	10.3	31
176	Ball milling induced low-temperature carbothermic reduction of ilmenite. Materials Letters, 1996, 28, 55-58.	2.6	30
177	Nano Au-decorated boron nitride nanotubes: Conductance modification and field-emission enhancement. Applied Physics Letters, 2008, 92, 243105.	3.3	30
178	Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochimica Acta, 2013, 108, 127-134.	5.2	30
179	Layerâ€byâ€Layer Assembly Fabrication of Porous Boron Nitride Coated Multifunctional Materials for Water Cleaning. Advanced Materials Interfaces, 2017, 4, 1700392.	3.7	30
180	Effect of warm rolling and annealing on the mechanical properties of aluminum composite reinforced with boron nitride nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 710, 366-373.	5.6	30

#	Article	IF	CITATIONS
181	Boron Nitride Nanosheet Dispersion at High Concentrations. ACS Applied Materials & Interfaces, 2021, 13, 44751-44759.	8.0	30
182	Probing electrochemical reactivity in an Sb ₂ S ₃ -containing potassium-ion battery anode: observation of an increased capacity. Journal of Materials Chemistry A, 2020, 8, 11424-11434.	10.3	30
183	First-Principles Calculation of <i>L</i> 1 ₀ -Disorder Phase Boundary in Fe-Pd System. Materials Transactions, 2004, 45, 1478-1484.	1.2	29
184	Non-covalent surface modification of boron nitride nanotubes for enhanced catalysis. Chemical Communications, 2014, 50, 225-227.	4.1	29
185	Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Research, 2019, 12, 33-39.	10.4	29
186	The evolution of hydriding and nitriding reactions during ball milling of titanium in ammonia. Journal of Materials Science Letters, 1995, 14, 542-544.	0.5	28
187	Influence of nitriding gases on the growth of boron nitride nanotubes. Journal of Materials Science, 2007, 42, 4025-4030.	3.7	28
188	Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes. Chemical Physics Letters, 2009, 476, 240-243.	2.6	28
189	Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode. Nano Research, 2015, 8, 3591-3603.	10.4	27
190	Interfacial reactions between titanium and boron nitride nanotubes. Scripta Materialia, 2017, 127, 108-112.	5.2	27
191	Synthesis of nanocrystalline transition metal and oxides for lithium storage. Journal of Power Sources, 2005, 146, 487-491.	7.8	26
192	First-principles calculation of L10 -disorder phase equilibria for Fe–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 244-249.	1.6	26
193	Quantitative secondary electron imaging for work function extraction at atomic level and layer identification of graphene. Scientific Reports, 2016, 6, 21045.	3.3	26
194	Different oxidation reactions of ilmenite induced by high energy ball milling. Journal of Alloys and Compounds, 1998, 266, 150-154.	5.5	25
195	Patterned growth and cathodoluminescence of conical boron nitride nanorods. Applied Physics Letters, 2006, 88, 093117.	3.3	25
196	TiO2 nanoparticles prepared by hydrochloric acid leaching of mechanically activated and carbothermic reduced ilmenite. Transactions of Nonferrous Metals Society of China, 2012, 22, 1232-1238.	4.2	25
197	Expanding the Applications of the Ilmenite Mineral to the Preparation of Nanostructures: TiO ₂ Nanorods and their Photocatalytic Properties in the Degradation of Oxalic Acid. Chemistry - A European Journal, 2013, 19, 1091-1096.	3.3	25
198	Efficient photocatalytic reduction of aqueous Cr(<scp>vi</scp>) over porous BNNSs/TiO ₂ nanocomposites under visible light irradiation. Catalysis Science and Technology, 2016, 6, 8309-8313.	4.1	25

#	Article	IF	CITATIONS
199	Approaching Reactive KFePO ₄ Phase for Potassium Storage by Adopting an Advanced Design Strategy. Batteries and Supercaps, 2020, 3, 450-455.	4.7	25
200	Documenting capacity and cyclic stability enhancements in synthetic graphite potassium-ion battery anode material modified by low-energy liquid phase ball milling. Journal of Power Sources, 2020, 476, 228733.	7.8	25
201	High-temperature phase transformations of iron anhydrous ammonia system realized by ball milling at room temperature. Journal of Applied Physics, 1996, 79, 3956.	2.5	24
202	Practical Amine Functionalization of Multiâ€Walled Carbon Nanotubes for Effective Interfacial Bonding. Plasma Processes and Polymers, 2012, 9, 733-741.	3.0	24
203	Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents. Powder Technology, 2013, 235, 581-589.	4.2	24
204	Synthesis of an indium oxide nanoparticle embedded graphene three-dimensional architecture for enhanced lithium-ion storage. Journal of Materials Chemistry A, 2015, 3, 18238-18243.	10.3	24
205	Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. Journal of Materials Research, 2017, 32, 3744-3752.	2.6	24
206	Atomically Thin Boron Nitride as an Ideal Spacer for Metal-Enhanced Fluorescence. ACS Nano, 2019, 13, 12184-12191.	14.6	24
207	Growth direction control of aligned carbon nanotubes. Carbon, 2005, 43, 3183-3186.	10.3	23
208	Porous TiO2with a controllable bimodal pore size distribution from natural ilmenite. CrystEngComm, 2011, 13, 1322-1327.	2.6	23
209	Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Research, 2014, 7, 1254-1262.	10.4	23
210	Scalable production of wrinkled and few-layered graphene sheets and their use for oil and organic solvent absorption. Physical Chemistry Chemical Physics, 2015, 17, 6913-6918.	2.8	23
211	Competitive gas-solid reactions realized by ball milling of Zr in ammonia gas. Journal of Materials Research, 1996, 11, 1500-1506.	2.6	22
212	Investigation of Nanoporous Carbon Powders Produced by High Energy Ball Milling and Formation of Carbon Nanotubes during Subsequent Annealing. Materials Science Forum, 1999, 312-314, 375-380.	0.3	22
213	Nanoporous transition metal oxynitrides as catalysts for the oxygen reduction reaction. Electrochimica Acta, 2013, 103, 151-160.	5.2	22
214	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2014, 2, 20382-20392.	10.3	22
215	Nitriding reactions of Tiî—Al system induced by ball milling in ammonia gas. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 187, 51-55.	5.6	21
216	Titanium Oxide Nanorods Extracted From Ilmenite Sands. Crystal Growth and Design, 2009, 9, 1240-1244.	3.0	21

#	Article	IF	CITATIONS
217	High yield BNNTs synthesis by promotion effect of milling-assisted precursor. Microelectronic Engineering, 2013, 110, 256-259.	2.4	21
218	Optimization of milling parameters on the synthesis of stearic acid coated CaCO3 nanoparticles. Journal of Coatings Technology Research, 2014, 11, 273-282.	2.5	21
219	Production of rutile from ilmenite by room temperature ball-milling-induced sulphurisation reaction. Journal of Alloys and Compounds, 1996, 245, 54-58.	5.5	20
220	First-principles calculations of phase equilibria and transformation dynamics of Fe-based alloys. Journal of Phase Equilibria and Diffusion, 2006, 27, 47-53.	1.4	20
221	Programmable graphene doping via electron beam irradiation. Nanoscale, 2017, 9, 8657-8664.	5.6	20
222	Nitrogenâ€doped Graphene Chainmail Wrapped IrCo Alloy Particles on Nitrogenâ€doped Graphene Nanosheet for Highly Active and Stable Full Water Splitting. ChemCatChem, 2019, 11, 5457-5465.	3.7	20
223	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	2.9	19
224	Electric contributions to magnetic force microscopy response from graphene and MoS2 nanosheets. Journal of Applied Physics, 2014, 116, .	2.5	19
225	Doping engineering on carbons as electrocatalysts for oxygen reduction reaction. Fundamental Research, 2021, 1, 807-823.	3.3	19
226	Improved growth of aligned carbon nanotubes by mechanical activation. Journal of Materials Research, 2004, 19, 2791-2794.	2.6	18
227	Clusters of α-LiFeO2 nanoparticles incorporated into multi-walled carbon nanotubes: a lithium-ion battery cathode with enhanced lithium storage properties. Physical Chemistry Chemical Physics, 2013, 15, 20371.	2.8	18
228	Evolution of the electrochemical capacitance of transition metal oxynitrides with time: the effect of ageing and passivation. Journal of Materials Chemistry A, 2014, 2, 12940-12951.	10.3	18
229	Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al ₂ O ₃ @Au Arrays for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces, 2018, 10, 8317-8323.	8.0	18
230	Carbon coated Na7Fe7(PO4)6F3: A novel intercalation cathode for sodium-ion batteries. Journal of Power Sources, 2014, 271, 497-503.	7.8	17
231	Fabrication of Boron Nitride Nanotube–Gold Nanoparticle Hybrids Using Pulsed Plasma in Liquid. Langmuir, 2014, 30, 10712-10720.	3.5	17
232	Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 21985-21991.	8.0	17
233	Crystal phase engineered quantum wells in ZnO nanowires. Nanotechnology, 2013, 24, 215202.	2.6	16
234	Synthesis of single-crystal nanoparticles of indium oxide by "urea glass―method and their electrochemical properties. Materials Letters, 2013, 91, 5-8.	2.6	16

#	Article	IF	CITATIONS
235	Boron carbide nanowires with uniform CNxcoatings. New Journal of Physics, 2007, 9, 13-13.	2.9	15
236	Unusual corrugated nanowires of zinc oxide. Journal of Crystal Growth, 2008, 310, 3139-3143.	1.5	15
237	Direct observation of defect levels in hexagonal BN by soft X-ray absorption spectroscopy. Chemical Physics Letters, 2009, 472, 190-193.	2.6	15
238	High-resolution x-ray absorption studies of core excitons in hexagonal boron nitride. Applied Physics Letters, 2012, 101, 191604.	3.3	15
239	Strategies, design and synthesis of advanced nanostructured electrodes for rechargeable batteries. Materials Chemistry Frontiers, 2021, 5, 5897-5931.	5.9	15
240	Mechanically enhanced carbothermic synthesis of iron-TiN composite. Journal of Materials Science Letters, 1997, 16, 37-39.	0.5	14
241	Growth and structure of prismatic boron nitride nanorods. Physical Review B, 2006, 74, .	3.2	14
242	Preparation and potential application of boron nitride nanocups. Materials Letters, 2012, 80, 148-151.	2.6	14
243	In situ prepared V ₂ O ₅ /graphene hybrid as a superior cathode material for lithium-ion batteries. RSC Advances, 2016, 6, 35287-35294.	3.6	14
244	Revealing important role of graphitic carbon nitride surface catalytic activity in photocatalytic hydrogen evolution by using different carbon co-catalysts. Applied Surface Science, 2019, 491, 236-244.	6.1	14
245	Patterned growth of carbon nanotubes on Si substrates without predeposition of metal catalysts. Applied Physics Letters, 2005, 87, 033103.	3.3	13
246	Fluoride-assisted synthesis of mullite (Al5.65Si0.35O9.175) nanowires. Chemical Communications, 2006, , 2780.	4.1	13
247	Field-emission characteristics of conical boron nitride nanorods. Journal Physics D: Applied Physics, 2007, 40, 144-147.	2.8	13
248	Direct observation of defects in hexagonal boron nitride by near-edge X-ray absorption fine structure and X-ray photoemission spectroscopy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 619, 94-97.	1.6	13
249	Cathodoluminescence of boron nitride nanotubes doped by ytterbium. Journal of Alloys and Compounds, 2010, 504, S353-S355.	5.5	13
250	Large-scale production of h-In2O3/carbon nanocomposites with enhanced lithium storage properties. Electrochimica Acta, 2014, 135, 128-132.	5.2	13
251	Lithium storage in disordered graphitic materials: a semi-quantitative study of the relationship between structure disordering and capacity. Physical Chemistry Chemical Physics, 2015, 17, 5084-5089.	2.8	13
252	Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surfaceâ€Enhanced Raman Spectroscopy. Angewandte Chemie, 2016, 128, 8545-8549.	2.0	13

#	Article	IF	CITATIONS
253	Computational phase diagrams for the Nd-based magnets based on the combined ab initio/CALPHAD approach. Scripta Materialia, 2018, 154, 305-310.	5.2	13
254	One-dimensional growth of TiO2 nanorods from ilmenite sands. Journal of Alloys and Compounds, 2010, 504, S364-S367.	5.5	12
255	Tree-like SnO2 nanowires and optical properties. Materials Chemistry and Physics, 2011, 126, 128-132.	4.0	12
256	Rigorous and Accurate Contrast Spectroscopy for Ultimate Thickness Determination of Micrometer-Sized Graphene on Gold and Molecular Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22520-22528.	8.0	12
257	<i>In situ</i> production of a two-dimensional molybdenum disulfide/graphene hybrid nanosheet anode for lithium-ion batteries. RSC Advances, 2020, 10, 12754-12758.	3.6	12
258	Anomalous evaporation behavior of ZnO powder milled mechanically under high-energy conditions. Materials Letters, 2008, 62, 715-718.	2.6	11
259	Preparation of composite electrodes with carbon nanotubes for lithium-ion batteries by low-energy ball milling. RSC Advances, 2014, 4, 36649-36655.	3.6	11
260	Lithium Germanate (Li ₂ GeO ₃): A Highâ€Performance Anode Material for Lithiumâ€lon Batteries. Angewandte Chemie, 2016, 128, 16293-16297.	2.0	11
261	Advanced Dualâ€Ion Batteries with Highâ€Capacity Negative Electrodes Incorporating Black Phosphorus. Advanced Science, 2022, , 2201116.	11.2	11
262	Rare-earth doped boron nitride nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 189-192.	3.5	10
263	Ball milled SnO2: a modified vapor source for growing nanostructures. Journal of Alloys and Compounds, 2010, 504, S315-S318.	5.5	10
264	Direct synthesis of rutile TiO2 nanorods with improved electrochemical lithium ion storage properties. Materials Letters, 2013, 98, 112-115.	2.6	10
265	Formation of the Face-Centered Cubic (FCC)-NdO x Phase at Nd/Nd-Fe-B Interface: A First-Principles Modeling. Jom, 2014, 66, 1133-1137.	1.9	10
266	Identification and topographical characterisation of microbial nanowires in Nostoc punctiforme. Antonie Van Leeuwenhoek, 2016, 109, 475-480.	1.7	10
267	Synthesis of porous polyvinylidene fluoride (PVDF) microspheres and their application in lithium sulfur batteries. Materials Letters, 2017, 188, 180-183.	2.6	10
268	<i>In situ</i> doping and synthesis of two-dimensional nanomaterials using mechano-chemistry. Nanoscale Horizons, 2019, 4, 642-646.	8.0	10
269	Transmission electron microscopy investigation of substitution reactions from carbon nanotube template to silicon carbide nanowires. New Journal of Physics, 2007, 9, 137-137.	2.9	9
270	Study on topological properties in two-dimensional grain networks via large-scale Monte Carlo simulation. Computational Materials Science, 2015, 103, 165-169.	3.0	9

#	Article	IF	CITATIONS
271	Additiveâ€Free Nb ₂ O ₅ â^'TiO ₂ Hybrid Anode towards Lowâ€Cost and Safe Lithiumâ€kon Batteries: A Green Electrode Material Produced in an Environmentally Friendly Process. Batteries and Supercaps, 2019, 2, 160-167.	4.7	9
272	Endâ€ofâ€Life Photovoltaic Recycled Silicon: A Sustainable Circular Materials Source for Electronic Industries. Advanced Energy and Sustainability Research, 2021, 2, 2100081.	5.8	9
273	Development of a prototype thermodynamic database for Nd-Fe-B permanent magnets. Science and Technology of Advanced Materials, 2021, 22, 557-570.	6.1	9
274	Nano germanium incorporated thin graphite nanoplatelets: A novel germanium based lithium-ion battery anode with enhanced electrochemical performance. Electrochimica Acta, 2021, 391, 139001.	5.2	9
275	Replacement reaction induced by ball milling of silica in nitrogen. Scripta Metallurgica Et Materialia, 1995, 32, 19-22.	1.0	8
276	Solid-state formation of carbon nanotubes. , 2006, , 53-80.		8
277	Focused ion beam milling as a universal template technique for patterned growth of carbon nanotubes. Applied Physics Letters, 2007, 90, 093126.	3.3	8
278	Surface wetting processing on BNNT films by selective plasma modes. Science Bulletin, 2013, 58, 3403-3408.	1.7	8
279	First-principles cluster variation calculations of tetragonal-cubic transition in ZrO2. Journal of Alloys and Compounds, 2013, 577, S123-S126.	5.5	8
280	Microstructural and mechanical properties of plasma sprayed boron nitride nanotubes reinforced alumina coating. Ceramics International, 2021, 47, 9194-9202.	4.8	8
281	Nanoparticle-mediated ultra grain refinement and reinforcement in additively manufactured titanium alloys. Additive Manufacturing, 2021, 46, 102173.	3.0	8
282	Substitution reactions of carbon nanotube template. Applied Physics Letters, 2006, 88, 223105.	3.3	7
283	Atomically thin boron nitride nanodisks. Materials Letters, 2013, 106, 409-412.	2.6	7
284	Long-range topological correlations of real polycrystalline grains in two dimensions. Materials Characterization, 2014, 97, 178-182.	4.4	7
285	Temperature-dependent Raman spectra of bamboo-like boron nitride nanotubes. Applied Physics Express, 2014, 7, 022401.	2.4	7
286	Promotion of the performance of nitrogen-doped graphene by secondary heteroatoms doping in energy transformation and storage. Ionics, 2019, 25, 3499-3522.	2.4	7
287	Towards the First-Principles Investigation of Ordering Dynamics. Materials Science Forum, 2005, 475-479, 3075-3080.	0.3	6
288	Twoâ€Dimensional Metal Oxide Nanoflowerâ€Like Architectures: A General Growth Method and Their Applications in Energy Storage and as Model Materials for Nanofabrication. ChemPlusChem, 2017, 82, 295-302.	2.8	6

#	Article	IF	CITATIONS
289	Surface-enhanced Raman on gold nanoparticles for the identification of the most common adulterant of Astragali Radix. Spectroscopy Letters, 2018, 51, 389-394.	1.0	6
290	Huge Lithium Storage in 2D Bilayer Structures with Point Defects. Journal of Physical Chemistry C, 2021, 125, 23597-23603.	3.1	6
291	Boron nitride nanosheets for surface-enhanced Raman spectroscopy. Materials Today Physics, 2022, 22, 100575.	6.0	6
292	Superb storage and energy saving separation of hydrocarbon gases in boron nitride nanosheets via a mechanochemical process. Materials Today, 2022, 57, 26-34.	14.2	6
293	Mechanochemical reactions of ilmenite with different additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 129-130, 61-66.	4.7	5
294	11B nuclear magnetic resonance study of boron nitride nanotubes prepared by mechano-thermal method. Solid State Communications, 2005, 134, 419-423.	1.9	5
295	First-Principles Study of Formation and Properties of Fcc-NdO _x in Nd-Fe-B Sintered Magnets. Materials Science Forum, 2010, 654-656, 1674-1677.	0.3	5
296	Ultra-fast and high-energy density polysulfide-eight ion batteries. Journal of Power Sources, 2020, 477, 229018.	7.8	5
297	Dynamics of Natural Spin Defects in Boron Nitride Nanotubes. Journal of Nanoscience and Nanotechnology, 2008, 8, 5193-5195.	0.9	4
298	Air-Assisted Growth of Tin Dioxide Nanoribbons. Journal of Nanoscience and Nanotechnology, 2010, 10, 5015-5019.	0.9	4
299	Lithium-metal polysulfide batteries with free-standing MoSxCy thin-film cathodes. Journal of Power Sources, 2021, 511, 230445.	7.8	4
300	Boron Nitride Nanotubes. Advanced Materials and Technologies, 2006, , 157-177.	0.4	4
301	Nanomaterials enhancing the solid-state storage and decomposition of ammonia. Nanotechnology, 2022, 33, 222001.	2.6	4
302	Half metallicity in a zigzag double-walled nanotube nanodot: An ab initio prediction. Chemical Physics Letters, 2009, 468, 257-259.	2.6	3
303	Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 031405.	2.1	3
304	Anomalous Enhancement of Mechanical Properties in the Ammonia Adsorbed Defective Graphene. Scientific Reports, 2016, 6, 33810.	3.3	3
305	Vertically aligned Î ³ -AlOOH nanosheets on Al foils as flexible and reusable substrates for NH3 adsorption. Frontiers of Physics, 2018, 13, 1.	5.0	3
306	Synthesis of High Density Boron Nitride Nanotube Film. Key Engineering Materials, 2013, 562-565, 926-929.	0.4	2

#	Article	IF	CITATIONS
307	Synthesis of Boron Nitride Nanotubes Using a Ball-Milling and Annealing Method. , 2005, , .		2
308	Optical properties of BN nanotubes. , 2006, , .		1
309	From Phase Equilibria to Transformation Dynamics. Defect and Diffusion Forum, 2007, 263, 21-30.	0.4	1
310	Effect of sintering temperature on electrochemical performance of LiFeO·4MnO·6PO4/C cathode materials. Materials Research Innovations, 2014, 18, S4-2-S4-5.	2.3	1
311	Supplementing Cold Plasma with Heat Enables Doping and Nanoâ€Structuring of Metal Oxides. Plasma Processes and Polymers, 2014, 11, 897-902.	3.0	1
312	Verification of a generalized Aboav-Weaire law via experiment and large-scale simulation. Europhysics Letters, 2014, 105, 68001.	2.0	1
313	Field emission properties from boron nitride nanotube field emitters. , 2015, , .		1
314	Study on the Influence of Li-Grease EP and AW Performance by Exfoliated MoS ₂ Nanosheet Additive. Advanced Science Letters, 2014, 20, 1387-1395.	0.2	1
315	Mechanochemical reactions in the system FeTiO ₃ –Si. Journal of Materials Research, 1998, 13, 3499-3503.	2.6	Ο
316	Mechanochemical Reactions of Ilmenite. Materials Science Forum, 1998, 269-272, 253-258.	0.3	0
317	Synthesis of MoS/sub 2/ nanostructures from nano-size powder by thermal annealing. , 0, , .		Ο
318	Synthesis and optical properties of mullite (Al/sub 5.65/Si/sub 0.35/O/sub 9.175/) nanowires. , 2006, , .		0
319	Synthesis of Silicon Carbide Nanowires on Carbon Nanotube Template. , 2006, , .		0
320	Phase Field Calculations with CVM Free Energy within Square Approximation. Materials Science Forum, 2007, 561-565, 1935-1940.	0.3	0
321	Use of Focused Ion Beam Milling for Patterned Growth of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2008, 1089, 30901.	0.1	0
322	Multi-Scale Phase Field Simulation of Disorder-Order Transition, Combined with Cluster Variation and Path Probability Methods. Materials Science Forum, 0, 631-632, 401-406.	0.3	0
323	Synchrotron Photoluminescence Spectroscopy of Boron Nitride Nanotubes with Different Metal Impurities. Materials Research Society Symposia Proceedings, 2009, 1204, 1.	0.1	0
324	V2O5 Nanorods with Improved Cycling Stability for Li Intercalation. Materials Research Society Symposia Proceedings, 2009, 1170, 76.	0.1	0

#	Article	IF	CITATIONS
325	Decoration of nitrogen vacancies by oxygen atoms in boron nitride nanotubes. , 2010, , .		0
326	Electrochemical performance of LiFe1â°'xMnxPO4/C materials prepared by ball milling. Materials Research Innovations, 2014, 18, S4-6-S4-9.	2.3	0
327	Growth of Single-Walled Carbon Nanotubes from Well-Defined POSS Nanoclusters Structure. Nano, 2015, 10, 1550004.	1.0	0
328	Boron nitride nanotube films: preparation, properties, and implications for biologyÂapplications. , 2016, , 165-181.		0
329	Boron Nitride Nanotubes. , 2006, , .		0
330	Boron Nitride Nanotubes and Nanoribbons Produced by Ball Milling Method. , 2015, , 33-58.		0
331	Development of a Prototype Thermodynamic Database for Nd-Fe-B Permanent Magnets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, S52-S62.	0.2	0