Iacopo Baussano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5899702/publications.pdf

Version: 2024-02-01

62 2,679 23
papers citations h-in

23 49
h-index g-index

70 70 all docs citations

70 times ranked 3557 citing authors

#	Article	IF	CITATIONS
1	Ageâ€specific burden of cervical cancer associated with <scp>HIV</scp> : A global analysis with a focus on <scp>subâ€Saharan</scp> Africa. International Journal of Cancer, 2022, 150, 761-772.	5.1	19
2	Predicting Cohort-Specific Cervical Cancer Incidence From Population-Based Surveys of Human Papilloma Virus Prevalence: A Worldwide Study. American Journal of Epidemiology, 2022, 191, 402-412.	3.4	7
3	Estimates of the global burden of cervical cancer associated with HIV. The Lancet Global Health, 2021, 9, e161-e169.	6.3	319
4	Estimating Total Excess Mortality During a Coronavirus Disease 2019 Outbreak in Stockholm, Sweden. Clinical Infectious Diseases, 2021, 72, e890-e892.	5.8	5
5	Cancer Screening in the Coronavirus Pandemic Era: Adjusting to a New Situation. JCO Global Oncology, 2021, 7, 416-424.	1.8	34
6	The role and utility of population-based cancer registries in cervical cancer surveillance and control. Preventive Medicine, 2021, 144, 106237.	3.4	17
7	Global estimates of expected and preventable cervical cancers among girls born between 2005 and 2014: a birth cohort analysis. Lancet Public Health, The, 2021, 6, e510-e521.	10.0	39
8	Optimal human papillomavirus vaccination strategies to prevent cervical cancer in low-income and middle-income countries in the context of limited resources: a mathematical modelling analysis. Lancet Infectious Diseases, The, 2021, 21, 1598-1610.	9.1	34
9	Prospects for accelerated elimination of cervical cancer. Preventive Medicine, 2021, 153, 106827.	3.4	9
10	Human papillomavirus genotypes in cervical and other HPVâ€related anogenital cancer in Rwanda, according to HIV status. International Journal of Cancer, 2020, 146, 1514-1522.	5.1	23
11	Baseline findings and safety of infrequent <i>vs</i> . frequent screening of human papillomavirus vaccinated women. International Journal of Cancer, 2020, 147, 440-447.	5.1	8
12	Prevalence of Human Papillomavirus and Estimation of Human Papillomavirus Vaccine Effectiveness in Thimphu, Bhutan, in 2011–2012 and 2018. Annals of Internal Medicine, 2020, 173, 888-894.	3.9	14
13	The cost-effectiveness profile of sex-neutral HPV immunisation in European tender-based settings: a model-based assessment. Lancet Public Health, The, 2020, 5, e592-e603.	10.0	16
14	Prevention is life- and cost-saving. Preventive Medicine, 2020, 138, 106150.	3.4	1
15	Vaccination With Moderate Coverage Eradicates Oncogenic Human Papillomaviruses If a Gender-Neutral Strategy Is Applied. Journal of Infectious Diseases, 2020, 222, 948-956.	4.0	29
16	Human papillomavirus vaccine coverage in Rwanda: A population-level analysis by birth cohort. Vaccine, 2020, 38, 4001-4005.	3.8	27
17	Impact of Human Papillomavirus Vaccination, Rwanda and Bhutan. Emerging Infectious Diseases, 2020, 27, 1-9.	4.3	21
18	Eradication of human papillomavirus and elimination of HPV-related diseases – scientific basis for global public health policies. Expert Review of Vaccines, 2019, 18, 153-160.	4.4	41

#	Article	IF	CITATIONS
19	Modelling cervical cancer elimination. Lancet Public Health, The, 2019, 4, e2-e3.	10.0	11
20	<scp>I</scp> mpacts of human papillomavirus vaccination for different populations: <scp>A</scp> modeling study. International Journal of Cancer, 2018, 143, 1086-1092.	5.1	18
21	Options for design of real-world impact studies of single-dose vaccine schedules. Vaccine, 2018, 36, 4816-4822.	3.8	11
22	Impact of genderâ€neutral or girlsâ€only vaccination against human papillomavirusâ€"Results of a communityâ€randomized clinical trial (I). International Journal of Cancer, 2018, 142, 949-958.	5.1	42
23	Genderâ€neutral vaccination provides improved control of human papillomavirus types 18/31/33/35 through herd immunity: Results of a community randomized trial (III). International Journal of Cancer, 2018, 143, 2299-2310.	5.1	46
24	Evaluation of human-papillomavirus testing and visual inspection for cervical cancer screening in Rwanda. BMC Women's Health, 2018, 18, 59.	2.0	18
25	Effect of age-difference between heterosexual partners on risk of cervical cancer and human papillomavirus infection. Papillomavirus Research (Amsterdam, Netherlands), 2017, 3, 98-104.	4.5	6
26	Causal system modelling of cervical cancer screening. Lancet Public Health, The, 2017, 2, e61-e62.	10.0	1
27	Different Challenges in Eliminating HPV16 Compared to Other Types: A Modeling Study. Journal of Infectious Diseases, 2017, 216, 336-344.	4.0	20
28	Cervical cancer screening in rural Bhutan with the <i>care</i> HPV test on self-collected samples: an ongoing cross-sectional, population-based study (REACH-Bhutan). BMJ Open, 2017, 7, e016309.	1.9	15
29	Evaluation of the performance of Human Papillomavirus testing in paired urine and clinician-collected cervical samples among women aged over 30Âyears in Bhutan. Virology Journal, 2017, 14, 74.	3.4	22
30	Cervical cancer screening in women vaccinated against human papillomavirus infection: Recommendations from a consensus conference. Preventive Medicine, 2017, 98, 21-30.	3.4	49
31	Evaluation of cytology versus human papillomavirus-based cervical cancer screening algorithms in Bhutan. Oncotarget, 2017, 8, 72438-72446.	1.8	8
32	Human Papillomavirus Vaccination at a Time of Changing Sexual Behavior. Emerging Infectious Diseases, 2016, 22, 18-23.	4.3	20
33	Urine testing to monitor the impact of HPV vaccination in Bhutan and Rwanda. International Journal of Cancer, 2016, 139, 518-526.	5.1	38
34	Population-level impact, herd immunity, and elimination after human papillomavirus vaccination: a systematic review and meta-analysis of predictions from transmission-dynamic models. Lancet Public Health, The, 2016, 1, e8-e17.	10.0	210
35	Human papillomavirus infection in Rwanda at the moment of implementation of a national HPV vaccination programme. BMC Infectious Diseases, 2016, 16, 225.	2.9	40
36	Human Papillomavirus Vaccination of Boys and Extended Catch-up Vaccination: Effects on the Resilience of Programs. Journal of Infectious Diseases, 2016, 213, 199-205.	4.0	56

3

#	Article	IF	Citations
37	HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nature Reviews Clinical Oncology, 2016, 13, 119-132.	27.6	154
38	Characteristics of a cluster-randomized phase IV human papillomavirus vaccination effectiveness trial. Vaccine, 2015, 33, 1284-1290.	3.8	40
39	Introduction of a National HPV vaccination program into Bhutan. Vaccine, 2015, 33, 3726-3730.	3.8	51
40	Naturally Acquired Immunity Against Human Papillomavirus (HPV): Why It Matters in the HPV Vaccine Era. Journal of Infectious Diseases, 2014, 210, 507-509.	4.0	16
41	Cervical cancer screening program in Thimphu, Bhutan: population coverage and characteristics associated with screening attendance. BMC Women's Health, 2014, 14, 147.	2.0	8
42	Upscaling human papillomavirus vaccination in high-income countries: impact assessment based on transmission model. Infectious Agents and Cancer, 2014, 9, 4.	2.6	14
43	Yield of tuberculosis contact investigation in a low-incidence country. Journal of Infection, 2014, 68, 448-454.	3.3	10
44	Human papillomavirus infection in Bhutan at the moment of implementation of a national HPV vaccination programme. BMC Infectious Diseases, 2014, 14, 408.	2.9	22
45	Benefits of catch-up in vaccination against human papillomavirus in medium- and low-income countries. International Journal of Cancer, 2013, 133, 1876-1881.	5.1	14
46	Comparison of HPV DNA testing in cervical exfoliated cells and tissue biopsies among HIV-positive women in Kenya. International Journal of Cancer, 2013, 133, 1441-1446.	5.1	17
47	High Rates of <i>Mycobacterium tuberculosis</i> li>among Socially Marginalized Immigrants in Low-Incidence Area, 1991–2010, Italy. Emerging Infectious Diseases, 2013, 19, 1437-1445.	4.3	17
48	Vaccinating Women Previously Exposed to Human Papillomavirus: A Cost-Effectiveness Analysis of the Bivalent Vaccine. PLoS ONE, 2013, 8, e75552.	2.5	19
49	Type-Specific Human Papillomavirus Biological Features: Validated Model-Based Estimates. PLoS ONE, 2013, 8, e81171.	2.5	21
50	Outcomes of a tuberculosis contact investigation programme in Italy. European Respiratory Journal, 2012, 40, 1291-1293.	6.7	0
51	Evaluation of Immigrant Tuberculosis Screening in Industrialized Countries. Emerging Infectious Diseases, 2012, 18, 1422-1429.	4.3	90
52	Modelling patterns of clearance of HPV-16 infection and vaccination efficacy. Vaccine, 2011, 29, 1270-1277.	3.8	24
53	Tuberculosis among Health Care Workers. Emerging Infectious Diseases, 2011, 17, 488-494.	4.3	263
54	Tuberculosis Incidence in Prisons: A Systematic Review. PLoS Medicine, 2010, 7, e1000381.	8.4	258

#	Article	IF	CITATIONS
55	HPV-16 infection and cervical cancer: Modeling the influence of duration of infection and precancerous lesions. Epidemics, 2010, 2, 21-28.	3.0	27
56	Does language matter? A case study of epidemiological and public health journals, databases and professional education in French, German and Italian. Emerging Themes in Epidemiology, 2008, 5, 16.	2.7	13
57	Continuous Positive Airway Pressure for Treatment of Respiratory Complications After Abdominal Surgery. Annals of Surgery, 2008, 247, 617-626.	4.2	154
58	Risk of tuberculin conversion among healthcare workers and the adoption of preventive measures. Occupational and Environmental Medicine, 2007, 64, 161-166.	2.8	34
59	Neonatal Screening for Cystic Fibrosis Does Not Affect Time to First Infection with Pseudomonas aeruginosa. Obstetrical and Gynecological Survey, 2007, 62, 20-21.	0.4	O
60	Expected number of childhood cancers in Italy from 2001 to 2015. Haematologica, 2007, 92, 1258-1261.	3.5	6
61	Feasibility of recruiting a birth cohort through the Internet: the experience of the NINFEA cohort. European Journal of Epidemiology, 2007, 22, 831-837.	5.7	83
62	Neonatal Screening for Cystic Fibrosis Does Not Affect Time to First Infection With Pseudomonas aeruginosa. Pediatrics, 2006, 118, 888-895.	2.1	22