
An Coosemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5899374/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A first-in-class, non-invasive, immunodynamic biomarker approach for precision immuno-oncology. Oncolmmunology, 2022, 11, 2024692.	4.6	6
2	Effect of Particle Carriers for Intraperitoneal Drug Delivery on the Course of Ovarian Cancer and Its Immune Microenvironment in a Mouse Model. Pharmaceutics, 2022, 14, 687.	4.5	4
3	Nucleosome footprinting in plasma cell-free DNA for the pre-surgical diagnosis of ovarian cancer. Npj Genomic Medicine, 2022, 7, 30.	3.8	4
4	An Autologous Dendritic Cell Vaccine Promotes Anticancer Immunity in Patients with Ovarian Cancer with Low Mutational Burden and Cold Tumors. Clinical Cancer Research, 2022, 28, 3053-3065.	7.0	26
5	Pan-Cancer Detection and Typing by Mining Patterns in Large Genome-Wide Cell-Free DNA Sequencing Datasets. Clinical Chemistry, 2022, 68, 1164-1176.	3.2	6
6	Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncolmmunology, 2022, 11, .	4.6	54
7	Liquid Biopsy in Glioblastoma. Cancers, 2022, 14, 3394.	3.7	17
8	Radiotherapy, Temozolomide, and Antiprogrammed Cell Death Protein 1 Treatments Modulate the Immune Microenvironment in Experimental High-Grade Glioma. Neurosurgery, 2021, 88, E205-E215.	1.1	17
9	CryptoCEST: A promising tool for spatially resolved identification of fungal brain lesions and their differentiation from brain tumors with MRI. NeuroImage: Clinical, 2021, 31, 102737.	2.7	5
10	Type of chemotherapy has substantial effects on the immune system in ovarian cancer. Translational Oncology, 2021, 14, 101076.	3.7	11
11	High-grade serous tubo-ovarian cancer refined with single-cell RNA sequencing: specific cell subtypes influence survival and determine molecular subtype classification. Genome Medicine, 2021, 13, 111.	8.2	70
12	Immunocompetent Mouse Models in the Search for Effective Immunotherapy in Glioblastoma. Cancers, 2021, 13, 19.	3.7	18
13	Immunological configuration of ovarian carcinoma: features and impact on disease outcome. , 2021, 9, e002873.		30
14	Peripherally-driven myeloid NFkB and IFN/ISG responses predict malignancy risk, survival, and immunotherapy regime in ovarian cancer. , 2021, 9, e003609.		24
15	Neo-Adjuvant Chemotherapy Reduces, and Surgery Increases Immunosuppression in First-Line Treatment for Ovarian Cancer. Cancers, 2021, 13, 5899.	3.7	9
16	The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2021, 7, 150.	5.2	112
17	Assessment of protein biomarkers for preoperative differential diagnosis between benign and malignant ovarian tumors. Gynecologic Oncology, 2020, 159, 811-819.	1.4	8
18	Validation of models to diagnose ovarian cancer in patients managed surgically or conservatively: multicentre cohort study. BMJ, The, 2020, 370, m2614.	6.0	54

#	Article	IF	CITATIONS
19	Gemcitabine Recruits M2-Type Tumor-Associated Macrophages into the Stroma of Pancreatic Cancer. Translational Oncology, 2020, 13, 100743.	3.7	34
20	Opposite Macrophage Polarization in Different Subsets of Ovarian Cancer: Observation from a Pilot Study. Cells, 2020, 9, 305.	4.1	22
21	Circulating Transcripts and Biomarkers in Uterine Tumors: Is There a Predictive Role?. Current Oncology Reports, 2020, 22, 12.	4.0	4
22	Simultaneous in vivo PET/MRI using fluorine-18 labeled Fe3O4@Al(OH)3 nanoparticles: comparison of nanoparticle and nanoparticle-labeled stem cell distribution. EJNMMI Research, 2020, 10, 73.	2.5	28
23	Radiation dose-escalation and dose-fractionation modulate the immune microenvironment, cancer stem cells and vasculature in experimental high-grade gliomas. Journal of Neurosurgical Sciences, 2020, , .	0.6	10
24	Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncolmmunology, 2019, 8, 1638212.	4.6	125
25	Circulating Protein Biomarkers to Differentiate Uterine Sarcomas from Leiomyomas. Anticancer Research, 2019, 39, 3981-3989.	1.1	14
26	Increased Immunosuppression Is Related to Increased Amounts of Ascites and Inferior Prognosis in Ovarian Cancer. Anticancer Research, 2019, 39, 5953-5962.	1.1	13
27	Myeloid Derived Suppressor Cells: Key Drivers of Immunosuppression in Ovarian Cancer. Frontiers in Immunology, 2019, 10, 1273.	4.8	65
28	Combining conventional therapy with immunotherapy: AÂrisky business?. European Journal of Cancer, 2019, 113, 41-44.	2.8	25
29	Risk of complications in patients with conservatively managed ovarian tumours (IOTA5): a 2-year interim analysis of a multicentre, prospective, cohort study. Lancet Oncology, The, 2019, 20, 448-458.	10.7	110
30	CT-2A neurospheres-derived high-grade glioma in mice: a new model to address tumor stem cells and immunosuppression. Biology Open, 2019, 8, .	1.2	12
31	Myeloid-derived suppressor cells at diagnosis may discriminate between benign and malignant ovarian tumors. International Journal of Gynecological Cancer, 2019, 29, 1381-1388.	2.5	17
32	Influence of CA125, platelet count and neutrophil to lymphocyte ratio on the immune system of ovarian cancer patients. Gynecologic Oncology, 2018, 150, 31-37.	1.4	42
33	Ovarian cancer and the immune system. Gynecologic Oncology Reports, 2017, 19, 57-58.	0.6	16
34	Potential Targets' Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas—an ENITEC Group Initiative. Clinical Cancer Research, 2017, 23, 1274-1285.	7.0	30
35	Orientation of Preclinical Research in Ovarian Cancer. International Journal of Gynecological Cancer, 2017, 27, 1579-1586.	2.5	0
36	Chromosomal Instability in Cell-Free DNA as a Highly Specific Biomarker for Detection of Ovarian Cancer in Women with Adnexal Masses. Clinical Cancer Research, 2017, 23, 2223-2231.	7.0	80

#	Article	IF	CITATIONS
37	mRNA Electroporation of Dendritic Cells with WT1, Survivin, and TriMix (a Mixture of caTLR4, CD40L,) Tj ETQq1 1	0,784314	l rgBT /Over
38	Ovarian cancer in children and adolescents: A rare disease that needs more attention. Maturitas, 2016, 88, 3-8.	2.4	19
39	Age-related differences in the sonographic characteristics of endometriomas. Human Reproduction, 2016, 31, 1723-1731.	0.9	43
40	Immunosuppressive parameters in serum of ovarian cancer patients change during the disease course. Oncolmmunology, 2016, 5, e1111505.	4.6	31
41	Morcellation and risk of malignancy in presumed ovarian fibromas/fibrothecomas. Lancet Oncology, The, 2016, 17, 273-274.	10.7	9
42	The Use of Toll-like Receptor 4 Agonist to Reshape the Immune Signature in Ovarian Cancer. Anticancer Research, 2016, 36, 5781-5792.	1.1	14
43	In Vitro Generation of Murine Dendritic Cells for Cancer Immunotherapy: An Optimized Protocol. Anticancer Research, 2016, 36, 5793-5802.	1.1	11
44	The dark side of ID8-Luc2: pitfalls for luciferase tagged murine models for ovarian cancer. , 2015, 3, 57.		17
45	Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology, 2015, 6, 588.	4.8	317
46	Wilms' tumor gene 1 immunotherapy in pelvic gynecological malignancies. Expert Review of Clinical Immunology, 2014, 10, 705-711.	3.0	4
47	Dendritic cell immunotherapy in uterine cancer. Human Vaccines and Immunotherapeutics, 2014, 10, 1822-1827.	3.3	6
48	Polymorphisms in Inflammation Pathway Genes and Endometrial Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 216-223.	2.5	22
49	Dendritic cell-based immunotherapy in ovarian cancer. Oncolmmunology, 2013, 2, e27059.	4.6	10
50	Immunological response after WT1 mRNA-loaded dendritic cell immunotherapy in ovarian carcinoma and carcinosarcoma. Anticancer Research, 2013, 33, 3855-9.	1.1	36
51	Wilms' Tumor Gene 1 (WT1)loaded dendritic cell immunotherapy in patients with uterine tumors: a phase I/II clinical trial. Anticancer Research, 2013, 33, 5495-500.	1.1	37
52	Genome-Wide Association Study Identifies a Possible Susceptibility Locus for Endometrial Cancer. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 980-987.	2.5	32
53	Screening for uterine tumours. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2012, 26, 257-266.	2.8	72
54	Wilms Tumor Gene 1(WT1) is a Prognostic Marker in High-Grade Uterine Sarcoma. International Journal of Gynecological Cancer, 2011, 21, 302-308.	2.5	24

#	Article	IF	CITATIONS
55	Intraperitoneal injection of cultured mesothelial cells decrease CO2 pneumoperitoneum-enhanced adhesions in a laparoscopic mouse model. Gynecological Surgery, 2011, 8, 409-414.	0.9	1
56	Wilms' tumour gene 1 (WT1) positivity in endothelial cells surrounding epithelial uterine tumours. Histopathology, 2009, 54, 384-387.	2.9	3
57	Wilms' tumor gene 1 (WT1) overexpression in neurons in deep endometriosis: a pilot study. Fertility and Sterility, 2009, 91, 1441-1444.	1.0	8
58	Clinical management of uterine sarcomas. Lancet Oncology, The, 2009, 10, 1188-1198.	10.7	374
59	Clinical Outcome of ET-743 (Trabectedin; Yondelis) in High-Grade Uterine Sarcomas: Report on Five Patients and a Review of the Literature. International Journal of Gynecological Cancer, 2009, 19, 245-248.	2.5	20
60	Wilms' tumor gene 1 (WT1) in endometrial carcinoma. Gynecologic Oncology, 2008, 111, 502-508.	1.4	27
61	Upregulation of Wilms' tumour gene 1 (WT1) in uterine sarcomas. European Journal of Cancer, 2007, 43, 1630-1637.	2.8	44