John P Spencer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5898781/publications.pdf Version: 2024-02-01

IOHN D SDENCED

#	Article	IF	CITATIONS
1	Word-Object Learning via Visual Exploration in Space (WOLVES): A neural process model of cross-situational word learning Psychological Review, 2022, 129, 640-695.	3.8	13
2	Testing predictions of a neural process model of visual attention in infancy across competitive and nonâ€competitive contexts. Infancy, 2022, 27, 389-411.	1.6	4
3	How do neural processes give rise to cognition? Simultaneously predicting brain and behavior with a dynamic model of visual working memory Psychological Review, 2021, 128, 362-395.	3.8	6
4	Learning words in space and time: Contrasting models of the suspicious coincidence effect. Cognition, 2021, 210, 104576.	2.2	3
5	Processing pipeline for image reconstructed fNIRS analysis using both MRI templates and individual anatomy. Neurophotonics, 2021, 8, 025010.	3.3	15
6	Speech planning and execution in children who stutter: Preliminary findings from a fNIRS investigation. Journal of Clinical Neuroscience, 2021, 91, 32-42.	1.5	2
7	The Development of Working Memory. Current Directions in Psychological Science, 2020, 29, 545-553.	5.3	12
8	The functional brain networks that underlie visual working memory in the first two years of life. NeuroImage, 2020, 219, 116971.	4.2	16
9	Prefrontal cortex activation supports the emergence of early stone age toolmaking skill. NeuroImage, 2019, 199, 57-69.	4.2	20
10	Early adversity in rural India impacts the brain networks underlying visual working memory. Developmental Science, 2019, 22, e12822.	2.4	49
11	A fNIRS Investigation of Speech Planning and Execution in Adults Who Stutter. Neuroscience, 2019, 406, 73-85.	2.3	18
12	Sex-specific alterations in preterm brain. Pediatric Research, 2019, 85, 55-62.	2.3	27
13	Empirical Tests of a Brainâ€Based Model of Executive Function Development. Child Development, 2019, 90, 210-226.	3.0	16
14	Changes in frontal and posterior cortical activity underlie the early emergence of executive function. Developmental Science, 2018, 21, e12602.	2.4	45
15	Evaluating motion processing algorithms for use with functional near-infrared spectroscopy data from young children. Neurophotonics, 2018, 5, 1.	3.3	8
16	Moving Word Learning to a Novel Space: A Dynamic Systems View of Referent Selection and Retention. Cognitive Science, 2017, 41, 52-72.	1.7	25
17	Introduction to the collection †How We Develop—Developmental Systems and the Emergence of Complex Behaviors'. Wiley Interdisciplinary Reviews: Cognitive Science, 2017, 8, e1413.	2.8	1
18	The functional brain networks that underlie Early Stone Age tool manufacture. Nature Human Behaviour, 2017, 1, .	12.0	81

#	Article	IF	CITATIONS
19	Modulating perceptual complexity and load reveals degradation of the visual working memory network in ageing. Neurolmage, 2017, 157, 464-475.	4.2	15
20	Model-based functional neuroimaging using dynamic neural fields: An integrative cognitive neuroscience approach. Journal of Mathematical Psychology, 2017, 76, 212-235.	1.8	16
21	Validating an image-based fNIRS approach with fMRI and a working memory task. NeuroImage, 2017, 147, 204-218.	4.2	61
22	Models at Play: Using Dynamic Field Theory to Understand Looking and Learning in Dyadic Interactions. Proceedings (mdpi), 2017, 1, 181.	0.2	0
23	Reaching into response selection: Stimulus and response similarity influence central operations Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 555-568.	0.9	3
24	Feature-Based Change Detection Reveals Inconsistent Individual Differences in Visual Working Memory Capacity. Frontiers in Systems Neuroscience, 2016, 10, 33.	2.5	8
25	Testing a dynamic-field account of interactions between spatial attention and spatial working memory. Attention, Perception, and Psychophysics, 2016, 78, 1043-1063.	1.3	8
26	A dynamic neural field model of temporal order judgments Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1718-1733.	0.9	1
27	The Infant Orienting With Attention Task: Assessing the Neural Basis of Spatial Attention in Infancy. Infancy, 2015, 20, 467-506.	1.6	38
28	Enhancing the Executive Functions of 3‥earâ€Olds in the Dimensional Change Card Sort Task. Child Development, 2015, 86, 812-827.	3.0	32
29	Nonâ€Bayesian Noun Generalization in 3―to 5‥earâ€Old Children: Probing the Role of Prior Knowledge in the Suspicious Coincidence Effect. Cognitive Science, 2015, 39, 268-306.	1.7	18
30	Response control networks are selectively modulated by attention to rare events and memory load regardless of the need for inhibition. NeuroImage, 2015, 120, 331-344.	4.2	13
31	Validating a new methodology for optical probe design and image registration in fNIRS studies. NeuroImage, 2015, 106, 86-100.	4.2	48
32	Grounding Cognitive‣evel Processes in Behavior: The View From Dynamic Systems Theory. Topics in Cognitive Science, 2015, 7, 191-205.	1.9	35
33	Dynamic interactions between visual working memory and saccade target selection. Journal of Vision, 2014, 14, 9-9.	0.3	34
34	Integrating the Behavioral and Neural Dynamics of Response Selection in a Dual-task Paradigm: A Dynamic Neural Field Model of Dux et al. (). Journal of Cognitive Neuroscience, 2014, 26, 334-351.	2.3	21
35	Change occurs when body meets environment: A review of the embodied nature of development. Japanese Psychological Research, 2014, 56, 385-401.	1.1	7
36	Probing the early development of visual working memory capacity with functional near-infrared spectroscopy. NeuroImage, 2014, 85, 314-325.	4.2	99

#	Article	IF	CITATIONS
37	The co-development of looking dynamics and discrimination performance Developmental Psychology, 2014, 50, 837-852.	1.6	26
38	Autonomy in Action: Linking the Act of Looking to Memory Formation in Infancy via Dynamic Neural Fields. Cognitive Science, 2013, 37, 1-60.	1.7	51
39	Autonomous visual exploration creates developmental change in familiarity and novelty seeking behaviors. Frontiers in Psychology, 2013, 4, 648.	2.1	33
40	A Dynamic Neural Field Model of Word Learning. , 2013, , 1-27.		8
41	A neurobehavioral model of flexible spatial language behaviors Journal of Experimental Psychology: Learning Memory and Cognition, 2012, 38, 1490-1511.	0.9	28
42	Behavioral dynamics and neural grounding of a dynamic field theory of multi-object tracking. Journal of Integrative Neuroscience, 2012, 11, 339-362.	1.7	17
43	When seeing is knowing: The role of visual cues in the dissociation between children's rule knowledge and rule use. Journal of Experimental Child Psychology, 2012, 111, 561-569.	1.4	6
44	Contributions of dynamic systems theory to cognitive development. Cognitive Development, 2012, 27, 401-418.	1.3	63
45	Grounding Word Learning in Space. PLoS ONE, 2011, 6, e28095.	2.5	93
46	Stronger neural dynamics capture changes in infants' visual working memory capacity over development. Developmental Science, 2011, 14, 1379-1392.	2.4	42
47	Finding a Way Out: Why Developmental Science Does Not Need Another "ism― Child Development Perspectives, 2011, 5, 166-168.	3.9	5
48	Twenty Years and Going Strong: A Dynamic Systems Revolution in Motor and Cognitive Development. Child Development Perspectives, 2011, 5, 260-266.	3.9	99
49	Learning Words in Space and Time. Psychological Science, 2011, 22, 1049-1057.	3.3	33
50	Come down from the clouds: Grounding Bayesian insights in developmental and behavioral processes. Behavioral and Brain Sciences, 2011, 34, 204-206.	0.7	2
51	Biased feedback in spatial recall yields a violation of delta rule learning. Psychonomic Bulletin and Review, 2010, 17, 581-588.	2.8	19
52	Corresponding delay-dependent biases in spatial language and spatial memory. Psychological Research, 2010, 74, 337-351.	1.7	3
53	The role of experience in location estimation: Target distributions shift location memory biases. Cognition, 2010, 115, 147-153.	2.2	24
54	A Dialogue on the Role of Computational Modeling in Developmental Science. Child Development Perspectives, 2010, 4, 152-158.	3.9	12

#	Article	IF	CITATIONS
55	Filling the Gap on Developmental Change: Tests of a Dynamic Field Theory of Spatial Cognition. Journal of Cognition and Development, 2010, 11, 328-355.	1.3	13
56	Scenes and tracking with dynamic neural fields: How to update a robotic scene representation. , 2010, ,		4
57	Comment on "Infants' Perseverative Search Errors Are Induced by Pragmatic Misinterpretation― Science, 2009, 325, 1624-1624.	12.6	11
58	A Dynamic Neural Field Model of Visual Working Memory and Change Detection. Psychological Science, 2009, 20, 568-577.	3.3	123
59	A layered neural architecture for the consolidation, maintenance, and updating of representations in visual working memory. Brain Research, 2009, 1299, 17-32.	2.2	59
60	Short Arms and Talking Eggs: Why We Should No Longer Abide the Nativist–Empiricist Debate. Child Development Perspectives, 2009, 3, 79-87.	3.9	133
61	Seeing the World Through a Third Eye: Developmental Systems Theory Looks Beyond the Nativist–Empiricist Debate. Child Development Perspectives, 2009, 3, 103-105.	3.9	14
62	Aligning body and world: Stable reference frames improve young children's search for hidden objects. Journal of Experimental Child Psychology, 2009, 102, 445-455.	1.4	4
63	Tests of the dynamic field theory and the spatial precision hypothesis: Capturing a qualitative developmental transition in spatial working memory Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1698-1725.	0.9	73
64	TOWARDS THE INTEGRATION OF LINGUISTIC AND NON-LINGUISTIC SPATIAL COGNITION: A DYNAMIC FIELD THEORY APPROACH. , 2009, , .		2
65	Dynamic Field Theory and Embodied Cognitive Dynamics. , 2009, , 86-118.		45
66	Moving toward a Unified Theory While Valuing the Importance of the Initial Conditions. , 2009, , 354-372.		10
67	It's in the Eye of the Beholder: Spatial Language and Spatial Memory Use the Same Perceptual Reference Frames. , 2009, , 102-131.		5
68	Generality with specificity: the dynamic field theory generalizes across tasks and time scales. Developmental Science, 2008, 11, 541-555.	2.4	32
69	Defending Qualitative Change: The View From Dynamical Systems Theory. Child Development, 2008, 79, 1639-1647.	3.0	64
70	Generalizing the dynamic field theory of spatial cognition across real and developmental time scales. Brain Research, 2008, 1202, 68-86.	2.2	86
71	Moving to higher ground: The dynamic field theory and the dynamics of visual cognition. New Ideas in Psychology, 2008, 26, 227-251.	1.9	87
72	Planning "Discrete―Movements Using a Continuous System: Insights from a Dynamic Field Theory of Movement Preparation. Motor Control, 2007, 11, 166-208.	0.6	11

#	Article	IF	CITATIONS
73	Calibration algorithm for eyetracking with unrestricted head movement. Behavior Research Methods, 2007, 39, 123-132.	4.0	14
74	A novel technology for investigating the dynamics of infant perseverative reaching. Behavior Research Methods, 2007, 39, 911-919.	4.0	3
75	Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames. Experimental Brain Research, 2007, 184, 165-178.	1.5	10
76	Carving up space at imaginary joints: Can people mentally impose arbitrary spatial category boundaries?. Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 871-894.	0.9	27
77	What Does Theoretical Neuroscience Have to Offer the Study of Behavioral Development?. , 2007, , 320-361.		53
78	What Makes Thinking about Development So Hard?. , 2007, , 375-386.		2
79	Toward a formal theory of flexible spatial behavior: Geometric category biases generalize across pointing and verbal response types Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 473-490.	0.9	45
80	Moving Toward a Grand Theory of Development: In Memory of Esther Thelen. Child Development, 2006, 77, 1521-1538.	3.0	90
81	Reference-related inhibition produces enhanced position discrimination and fast repulsion near axes of symmetry. Perception & Psychophysics, 2006, 68, 1027-1046.	2.3	41
82	Unifying Representations and Responses. Psychological Science, 2004, 15, 187-193.	3.3	27
83	Developmental continuity in the processes that underlie spatial recall. Cognitive Psychology, 2003, 47, 432-480.	2.2	65
84	Introduction to the special issue: why this question and why now?. Developmental Science, 2003, 6, 375-377.	2.4	9
85	Bridging the representational gap in the dynamic systems approach to development. Developmental Science, 2003, 6, 392-412.	2.4	200
86	Testing the Dynamic Field Theory: Working Memory for Locations Becomes More Spatially Precise Over Development. Child Development, 2003, 74, 1393-1417.	3.0	165
87	Developmental Changes in the Relative Weighting of Geometric and Experience-Dependent Location Cues. Journal of Cognition and Development, 2003, 4, 3-38.	1.3	34
88	Developmental Changes in the Relative Weighting of Geometric and Experience-Dependent Location Cues. Journal of Cognition and Development, 2003, 4, 3-38.	1.3	17
89	Prototypes and particulars: Geometric and experience-dependent spatial categories Journal of Experimental Psychology: General, 2002, 131, 16-37.	2.1	91
90	Generalizing the Dynamic Field Theory of the A-not-B Error Beyond Infancy: Three-Year-Olds' Delay- and Experience-Dependent Location Memory Biases. Child Development, 2002, 73, 377-404.	3.0	83

#	Article	IF	CITATIONS
91	Prototypes and particulars: Geometric and experience-dependent spatial categories Journal of Experimental Psychology: General, 2002, 131, 16-37.	2.1	65
92	The essence of cognitive development. Behavioral and Brain Sciences, 2001, 24, 62-63.	0.7	1
93	Tests of a Dynamic Systems Account of the Aâ€notâ€B Error: The Influence of Prior Experience on the Spatial Memory Abilities of Twoâ€Yearâ€Olds. Child Development, 2001, 72, 1327-1346.	3.0	126
94	Posture and the emergence of manual skills. Developmental Science, 2000, 3, 216-233.	2.4	73
95	Spatially Specific Changes in Infants' Muscle Coactivity as They Learn to Reach. Infancy, 2000, 1, 275-302.	1.6	48
96	A multimuscle state analysis of adult motor learning. Experimental Brain Research, 1999, 128, 505-516.	1.5	18
97	Postural Control During Reaching in Young Infants: A Dynamic Systems Approach. Neuroscience and Biobehavioral Reviews, 1998, 22, 507-514.	6.1	167
98	Development of reaching during the first year: Role of movement speed Journal of Experimental Psychology: Human Perception and Performance, 1996, 22, 1059-1076.	0.9	297
99	The Transition to Reaching: Mapping Intention and Intrinsic Dynamics. Child Development, 1993, 64, 1058.	3.0	471
100	The Transition to Reaching: Mapping Intention and Intrinsic Dynamics. Child Development, 1993, 64, 1058-1098.	3.0	498