Robson Coutinho-Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5897744/publications.pdf Version: 2024-02-01

		66343	110387
141	5,133	42	64
papers	citations	h-index	g-index
143 all docs	143 docs citations	143 times ranked	5292 citing authors

#	Article	IF	CITATIONS
1	The P2X7 Receptor in Inflammatory Diseases: Angel or Demon?. Frontiers in Pharmacology, 2018, 9, 52.	3.5	307
2	P _{2Z} /P2X ₇ receptor-dependent apoptosis of dendritic cells. American Journal of Physiology - Cell Physiology, 1999, 276, C1139-C1147.	4.6	204
3	Inhibition of Chlamydial Infectious Activity due to P2X7R-Dependent Phospholipase D Activation. Immunity, 2003, 19, 403-412.	14.3	155
4	Purinergic signaling, DAMPs, and inflammation. American Journal of Physiology - Cell Physiology, 2020, 318, C832-C835.	4.6	127
5	CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. Journal of Hepatology, 2017, 67, 716-726.	3.7	122
6	The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney International, 2006, 70, 1599-1606.	5.2	107
7	Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptorâ€expressing cells: implications for its therapeutic action. British Journal of Pharmacology, 2011, 163, 912-926.	5.4	107
8	P2X and P2Y purinergic receptors on human intestinal epithelial carcinoma cells: effects of extracellular nucleotides on apoptosis and cell proliferation. American Journal of Physiology - Renal Physiology, 2005, 288, G1024-G1035.	3.4	105
9	C terminus of the P2X7 receptor: treasure hunting. Purinergic Signalling, 2011, 7, 7-19.	2.2	102
10	P2Z purinoceptor-associated pores induced by extracellular ATP in macrophages and J774 cells. American Journal of Physiology - Cell Physiology, 1997, 273, C1793-C1800.	4.6	101
11	Modulation of P2Z/P2X ₇ receptor activity in macrophages infected with <i>Chlamydia psittaci</i> . American Journal of Physiology - Cell Physiology, 2001, 280, C81-C89.	4.6	97
12	Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis. Life Sciences, 2017, 189, 29-38.	4.3	92
13	Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes and Infection, 2012, 14, 1271-1277.	1.9	84
14	Activation of the P2X7 receptor triggers the elimination of Toxoplasma gondii tachyzoites from infected macrophages. Microbes and Infection, 2010, 12, 497-504.	1.9	82
15	Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor. PLoS ONE, 2014, 9, e96281.	2.5	82
16	Host ell lipid rafts: a safe door for microâ€organisms?. Biology of the Cell, 2010, 102, 391-407.	2.0	81
17	Overexpression of ATP-activated P2X7 Receptors in the Intestinal Mucosa Is Implicated in the Pathogenesis of Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 444-457.	1.9	81
18	The P2X7 Receptor Mediates Toxoplasma gondii Control in Macrophages through Canonical NLRP3 Inflammasome Activation and Reactive Oxygen Species Production. Frontiers in Immunology, 2017, 8, 1257.	4.8	77

#	Article	IF	CITATIONS
19	Modulation of P2X7 purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes and Infection, 2009, 11, 842-849.	1.9	75
20	Pulmonary Infection with Hypervirulent Mycobacteria Reveals a Crucial Role for the P2X7 Receptor in Aggressive Forms of Tuberculosis. PLoS Pathogens, 2014, 10, e1004188.	4.7	74
21	Multifaceted Effects of Extracellular Adenosine Triphosphate and Adenosine in the Tumor–Host Interaction and Therapeutic Perspectives. Frontiers in Immunology, 2017, 8, 1526.	4.8	74
22	The role of p2x7 receptor in infectious inflammatory diseases and the influence of ectonucleotidases. Biomedical Journal, 2014, 37, 169.	3.1	69
23	P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria. PLoS Pathogens, 2017, 13, e1006595.	4.7	66
24	P2X and P2Y purinoceptor expression in pancreas from streptozotocin-diabetic rats. Molecular and Cellular Endocrinology, 2003, 204, 141-154.	3.2	65
25	Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 65-78.	3.8	62
26	Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochemical Pharmacology, 2005, 69, 641-655.	4.4	60
27	Extracellular ATP induces cell death in human intestinal epithelial cells. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1867-1878.	2.4	60
28	Purinergic receptor agonists modulate phagocytosis and clearance of apoptotic cells in macrophages. Immunobiology, 2011, 216, 1-11.	1.9	59
29	Changes in expression of P2 receptors in rat and mouse pancreas during development and ageing. Cell and Tissue Research, 2001, 306, 373-383.	2.9	57
30	Characterization of ATPâ€induced cell death in the GL261 mouse glioma. Journal of Cellular Biochemistry, 2010, 109, 983-991.	2.6	57
31	Immunological Pathways Triggered by <i>Porphyromonas gingivalis</i> and <i>Fusobacterium nucleatum</i> : Therapeutic Possibilities?. Mediators of Inflammation, 2019, 2019, 1-20.	3.0	57
32	The role of P2X7 purinergic receptors in inflammatory and nociceptive changes accompanying cyclophosphamideâ€induced haemorrhagic cystitis in mice. British Journal of Pharmacology, 2012, 165, 183-196.	5.4	55
33	P2X7 Receptor Modulates Inflammatory and Functional Pulmonary Changes Induced by Silica. PLoS ONE, 2014, 9, e110185.	2.5	55
34	Leukotriene B4 Modulates P2X7 Receptor–Mediated <i>Leishmania amazonensis</i> Elimination in Murine Macrophages. Journal of Immunology, 2014, 192, 4765-4773.	0.8	53
35	The P2X7 receptor and intracellular pathogens: a continuing struggle. Purinergic Signalling, 2009, 5, 197-204.	2.2	52
36	Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine. Molecular Neurobiology, 2016, 53, 611-620.	4.0	51

ROBSON COUTINHO-SILVA

#	Article	IF	CITATIONS
37	Lipopolysaccharide-induced lung injury: Role of P2X7 receptor. Respiratory Physiology and Neurobiology, 2011, 179, 314-325.	1.6	50
38	Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microbial Pathogenesis, 2017, 112, 126-134.	2.9	50
39	Modulation of intercellular communication in macrophages: possible interactions between GAP junctions and P2 receptors. Journal of Cell Science, 2004, 117, 4717-4726.	2.0	49
40	A Dual Role for P2X7 Receptor during <i>Porphyromonas gingivalis</i> Infection. Journal of Dental Research, 2015, 94, 1233-1242.	5.2	46
41	The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signalling, 2007, 3, 83-90.	2.2	45
42	P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1183-1194.	3.8	45
43	The P2X7 Receptor Contributes to the Development of the Exacerbated Inflammatory Response Associated with Sepsis. Journal of Innate Immunity, 2015, 7, 417-427.	3.8	44
44	<i>Porphyromonas gingivalis</i> Fimbriae Dampen P2X7-Dependent Interleukin-11² Secretion. Journal of Innate Immunity, 2014, 6, 831-845.	3.8	43
45	Silica-induced inflammasome activation in macrophages: role of ATP and P2X7 receptor. Immunobiology, 2015, 220, 1101-1106.	1.9	42
46	Expression of purinergic receptors and modulation of P2X7 function by the inflammatory cytokine IFNÎ ³ in human epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1176-1187.	2.6	41
47	P2X7 Receptor Signaling Contributes to Sepsis-Associated Brain Dysfunction. Molecular Neurobiology, 2017, 54, 6459-6470.	4.0	41
48	Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes and Infection, 2003, 5, 1363-1371.	1.9	39
49	Non-canonical NLRP3 inflammasome activation and IL-1 ^{î2} signaling are necessary to L. amazonensis control mediated by P2X7 receptor and leukotriene B4. PLoS Pathogens, 2019, 15, e1007887.	4.7	38
50	Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: A mouse model study. Immunobiology, 2013, 218, 1104-1112.	1.9	37
51	Is the inflammasome relevant for epithelial cell function?. Microbes and Infection, 2016, 18, 93-101.	1.9	37
52	Activation of ERK1/2 by extracellular nucleotides in macrophages is mediated by multiple P2 receptors independently of P2X7 -associated pore or channel formation. British Journal of Pharmacology, 2006, 147, 324-334.	5.4	36
53	Infection with Leishmania amazonensis upregulates purinergic receptor expression and induces host-cell susceptibility to UTP-mediated apoptosis. Cellular Microbiology, 2011, 13, 1410-1428.	2.1	36
54	Purinergic signaling in the modulation of redox biology. Redox Biology, 2021, 47, 102137.	9.0	36

#	Article	IF	CITATIONS
55	The purinergic receptor P2X7 role in control of Dengue virus-2 infection and cytokine/chemokine production in infected human monocytes. Immunobiology, 2016, 221, 794-802.	1.9	33
56	Gap junction reduction in cardiomyocytes following transforming growth factor-β treatment and Trypanosoma cruzi infection. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 1083-1090.	1.6	32
57	Pathological concentrations of homocysteine increases IL-1β production in macrophages in a P2X7, NF-Ä,B, and erk-dependent manner. Purinergic Signalling, 2015, 11, 463-470.	2.2	32
58	Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis. Immunobiology, 2017, 222, 676-683.	1.9	31
59	A cation non-selective channel induced by extracellular ATP in macrophages and phagocytic cells of the thymic reticulum. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1278, 125-130.	2.6	30
60	Characterizing the Presence and Sensitivity of the P2X7 Receptor in Different Compartments of the Gut. Journal of Innate Immunity, 2012, 4, 529-541.	3.8	30
61	Purinergic signaling in infectious diseases of the central nervous system. Brain, Behavior, and Immunity, 2020, 89, 480-490.	4.1	30
62	The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signalling, 2017, 13, 143-152.	2.2	29
63	Oral infection of mice with Fusobacterium nucleatum results in macrophage recruitment to the dental pulp and bone resorption. Biomedical Journal, 2018, 41, 184-193.	3.1	29
64	P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice. Molecular and Cellular Endocrinology, 2016, 419, 148-157.	3.2	28
65	Immunomodulatory effects of P2X7 receptor in intracellular parasite infections. Current Opinion in Pharmacology, 2019, 47, 53-58.	3.5	28
66	Differential Modulation of ATP-Induced P2X7-Associated Permeabilities to Cations and Anions of Macrophages by Infection with Leishmania amazonensis. PLoS ONE, 2011, 6, e25356.	2.5	27
67	Characterization of P2Z purinergic receptors on phagocytic cells of the thymic reticulum in culture. Biochimica Et Biophysica Acta - Biomembranes, 1996, 1280, 217-222.	2.6	26
68	Changes in expression of P2X7receptors in NOD mouse pancreas during the development of diabetes. Autoimmunity, 2007, 40, 108-116.	2.6	26
69	Contribution of sulfate-reducing bacteria to homeostasis disruption during intestinal inflammation. Life Sciences, 2018, 215, 145-151.	4.3	26
70	Purinergic Cooperation Between P2Y2 and P2X7 Receptors Promote Cutaneous Leishmaniasis Control: Involvement of Pannexin-1 and Leukotrienes. Frontiers in Immunology, 2018, 9, 1531.	4.8	26
71	Endothelial P2X7 receptors' expression is reduced by schistosomiasis. Purinergic Signalling, 2013, 9, 81-89.	2.2	25
72	Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signalling, 2011, 7, 381-392.	2.2	23

ROBSON COUTINHO-SILVA

#	Article	IF	CITATIONS
73	Purinergic signaling during Porphyromonas gingivalis infection. Biomedical Journal, 2016, 39, 251-260.	3.1	23
74	<scp>P</scp> 2 <scp>X</scp> 7 receptor is required for neutrophil accumulation in a mouse model of irritant contact dermatitis. Experimental Dermatology, 2013, 22, 184-188.	2.9	22
75	Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Frontiers in Immunology, 2021, 12, 651740.	4.8	22
76	Impairment of the splenic immune system in P2X2/P2X3 knockout mice. Immunobiology, 2005, 209, 661-668.	1.9	21
77	Reversible Inhibition of Chlamydia trachomatis Infection in Epithelial Cells Due to Stimulation of P2X4Receptors. Infection and Immunity, 2012, 80, 4232-4238.	2.2	21
78	Purinergic signalling in host innate immune defence against intracellular pathogens. Biochemical Pharmacology, 2021, 187, 114405.	4.4	21
79	Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasites and Vectors, 2016, 9, 489.	2.5	20
80	Potential role of P2X7R in esophageal squamous cell carcinoma proliferation. Purinergic Signalling, 2017, 13, 279-292.	2.2	20
81	The P2X7 Receptor Promotes Colorectal Inflammation and Tumorigenesis by Modulating Gut Microbiota and the Inflammasome. International Journal of Molecular Sciences, 2022, 23, 4616.	4.1	19
82	Mast Cell Function and Death in Trypanosoma cruzi Infection. American Journal of Pathology, 2011, 179, 1894-1904.	3.8	18
83	Purinergic signaling in infection and autoimmune disease. Biomedical Journal, 2016, 39, 304-305.	3.1	18
84	Innate immune memory mediates increased susceptibility to Alzheimer's disease-like pathology in sepsis surviving mice. Brain, Behavior, and Immunity, 2021, 95, 287-298.	4.1	18
85	P2X7 modulatory web in Trypanosoma cruzi infection. Parasitology Research, 2008, 103, 829-838.	1.6	17
86	Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages. PLoS ONE, 2015, 10, e0133502.	2.5	17
87	P2X7 receptor deletion attenuates oxidative stress and liver damage in sepsis. Purinergic Signalling, 2020, 16, 561-572.	2.2	17
88	Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF- <i>î²</i> 1. Mediators of Inflammation, 2014, 2014, 1-12.	3.0	16
89	Pharmacological blockage and P2X7 deletion hinder aversive memories: Reversion in an enriched environment. Neuroscience, 2014, 280, 220-230.	2.3	16
90	P2X7 receptor-mediated leukocyte recruitment and Porphyromonas gingivalis clearance requires IL-1Î ² production and autocrine IL-1 receptor activation. Immunobiology, 2019, 224, 50-59.	1.9	16

#	Article	IF	CITATIONS
91	P2X7 receptor activation increases caveolin-1 expression and macrophage lipid raft formation boosting CD39 activity. Journal of Cell Science, 2020, 133, .	2.0	15
92	Antileishmanial Chemotherapy through Clemastine Fumarate Mediated Inhibition of the <i>Leishmania</i> Inositol Phosphorylceramide Synthase. ACS Infectious Diseases, 2021, 7, 47-63.	3.8	15
93	MSU Crystals induce sterile IL-1Î ² secretion via P2X7 receptor activation and HMGB1 release. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129461.	2.4	14
94	Extracellular ATP: A Further Modulator in Neuroendocrine Control of the Thymus. NeuroImmunoModulation, 1999, 6, 81-89.	1.8	13
95	Presence of the P2X7 purinergic receptor on immune cells that invade the rat endometrium during oestrus. Journal of Reproductive Immunology, 2005, 66, 127-140.	1.9	13
96	Modulation of P2X7 receptor expression in macrophages from mineral oil-injected mice. Immunobiology, 2008, 213, 481-492.	1.9	13
97	Increased expression of NTPDases 2 and 3 in mesenteric endothelial cells during schistosomiasis favors leukocyte adhesion through P2Y1 receptors. Vascular Pharmacology, 2016, 82, 66-72.	2.1	13
98	Disruption of Purinergic Receptor P2X7 Signaling Increases Susceptibility to Cerebral Toxoplasmosis. American Journal of Pathology, 2019, 189, 730-738.	3.8	13
99	Creatine supplementation impairs airway inflammation in an experimental model of asthma involving P2 × 7 receptor. European Journal of Immunology, 2019, 49, 928-939.	2.9	12
100	Brilliant blue G, a P2X7 receptor antagonist, attenuates early phase of renal inflammation, interstitial fibrosis and is associated with renal cell proliferation in ureteral obstruction in rats. BMC Nephrology, 2020, 21, 206.	1.8	12
101	Danger signals, inflammasomes, and the intricate intracellular lives of chlamydiae. Biomedical Journal, 2016, 39, 306-315.	3.1	11
102	Intralesional uridine-5′-triphosphate (UTP) treatment induced resistance to Leishmania amazonensis infection by boosting Th1 immune responses and reactive oxygen species production. Purinergic Signalling, 2018, 14, 201-211.	2.2	11
103	CD73â€dependent adenosine dampens interleukinâ€lβ–induced CXCL8 production in gingival fibroblasts: Association with heme oxygenaseâ€1 and adenosine monophosphate‒activated protein kinase. Journal of Periodontology, 2020, 91, 253-262.	3.4	10
104	Differential involvement of the canonical and noncanonical inflammasomes in the immune response against infection by the periodontal bacteria Porphyromonas gingivalis and Fusobacterium nucleatum. Current Research in Microbial Sciences, 2021, 2, 100023.	2.3	10
105	Pharmacological and molecular characterization of functional P2 receptors in rat embryonic cardiomyocytes. Purinergic Signalling, 2015, 11, 127-138.	2.2	9
106	Targeting Purinergic Signaling in the Dynamics of Disease Progression in Sepsis. Frontiers in Pharmacology, 2020, 11, 626484.	3.5	9
107	Low-Cost Scientific Exhibition: A Proposal to Promote Science Education. Creative Education, 2020, 11, 760-782.	0.4	9
108	Early Expression of Adenosine 5′-Triphosphate-Gated P2X7 Receptors in the Developing Rat Pancreas. Pancreas, 2007, 35, 164-168.	1.1	8

ROBSON COUTINHO-SILVA

#	Article	IF	CITATIONS
109	Decrease of serum adenine nucleotide hydrolysis in an irritant contact dermatitis mice model: potential P2X7R involvement. Molecular and Cellular Biochemistry, 2015, 404, 221-228.	3.1	8
110	Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y1 Receptor. Molecular Neurobiology, 2017, 54, 5142-5155.	4.0	8
111	P2Y12 Receptor Antagonist Clopidogrel Attenuates Lung Inflammation Triggered by Silica Particles. Frontiers in Pharmacology, 2020, 11, 301.	3.5	8
112	Hyperhomocysteinemia alters cytokine gene expression, cytochrome c oxidase activity and oxidative stress in striatum and cerebellum of rodents. Life Sciences, 2021, 277, 119386.	4.3	8
113	Periodateâ€oxidized ATP modulates macrophage functions during infection with <i>Leishmania amazonensis</i> . Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 588-600.	1.5	7
114	P2Y2 Receptor Induces L. amazonensis Infection Control in a Mechanism Dependent on Caspase-1 Activation and IL-1β Secretion. Mediators of Inflammation, 2020, 2020, 1-11.	3.0	7
115	Effect of Extracellular ATP on the Human Leukaemic Cell Line K562 and its Multidrug Counterpart. Molecular and Cellular Biochemistry, 2006, 289, 111-124.	3.1	6
116	Cellular alarms and whispers contribute to the polyphonic melody of danger signals required for immunity. Microbes and Infection, 2012, 14, 1239-1240.	1.9	5
117	Protein kinase C-mediated ATP stimulation of Na+-ATPase activity in LLC-PK1 cells involves a P2Y2 and/or P2Y4 receptor. Archives of Biochemistry and Biophysics, 2013, 535, 136-142.	3.0	5
118	Using Cytometry for Investigation of Purinergic Signaling in Tumorâ€Associated Macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1109-1126.	1.5	5
119	P2X7 Receptor Triggers Lysosomal Leakage Through Calcium Mobilization in a Mechanism Dependent on Pannexin-1 Hemichannels. Frontiers in Immunology, 2022, 13, 752105.	4.8	5
120	The P2Z purinoceptor: an open question in the immune system. Trends in Immunology, 1996, 17, 292-293.	7.5	4
121	Purinergic signaling: A new front-line determinant of resistance and susceptibility in leishmaniasis. Biomedical Journal, 2021, , .	3.1	4
122	Rivastigmine Reverses the Decrease in Synapsin and Memory Caused by Homocysteine: Is There Relation to Inflammation?. Molecular Neurobiology, 2022, 59, 4517-4534.	4.0	4
123	A Função social dos museus e centros de ciências: integração com escolas e secretarias de educação. Ciência E Cultura, 2019, 71, 04-05.	0.0	3
124	ARTRÓPODES E A DIVULGAÇÃ∱O CIENTÃFICA: UMA OPORTUNIDADE PARA O DIÃŁOGO EM SAÚDE. Ensino Saude E Ambiente, 2020, 13, .	0.1	3
125	Formação continuada de professores dos anos iniciais da educação básica: impacto do programa formativo de um museu de ciência a partir do viés crÃtico-reflexivo. Ensaio Pesquisa Em EducaÁ§Ã£o Em Ciências, 2017, 19, .	0.4	2
126	A journey through the digestive system: analysis of a practical activity's use as a didactic resource for undergraduate students. Journal of Biological Education, 2020, , 1-33.	1.5	2

#	Article	IF	CITATIONS
127	The Complexity of Purinergic Signaling During Toxoplasma Infection. Current Topics in Medicinal Chemistry, 2021, 21, 205-212.	2.1	2
128	Educação CientÃfica nos anos iniciais do Ensino Fundamental por meio da Feira de Ciências dos Pequenos Cientistas. Research, Society and Development, 2020, 9, e990975140.	0.1	2
129	Atividades experimentais e o ensino de FÃsica para os anos iniciais do Ensino Fundamental: análise de um programa formativo para professores. Caderno Brasileiro De Ensino De FÃsica, 2016, 33, 579.	0.1	1
130	The giant artery: blood and blood vessels in a science museum. Journal of Biological Education, 2021, 55, 440-458.	1.5	1
131	Dietary Fiber Drives IL-1β–Dependent Peritonitis Induced by Bacteroides fragilis via Activation of the NLRP3 Inflammasome. Journal of Immunology, 2021, 206, 2441-2452.	0.8	1
132	92 The P2X7 Purinergic Receptor Is a Critical Regulator of Intestinal Inflammation and Colitis-Associated Colorectal Cancer in Mice. Gastroenterology, 2015, 148, S-27.	1.3	0
133	Tu1833 Dextran Sodium Sulfate Disrupts the Intestinal Epithelium by Inhibiting Cell Turnover and Migration, and Favoring the Activity of Sulfate-Reducing Bacteria. Gastroenterology, 2016, 150, S956.	1.3	0
134	Tu1784 - The Severity of Murine Toxoplasma Gondii -Induced Crohn'slike Ileitis is Modulated by P2X7 Signaling. Gastroenterology, 2018, 154, S-1018.	1.3	0
135	Ensino de Ciências por investigação: contribuições de artigos de bases de dados abertas para a práxis docente. Revista De Ensino De Ciências E Matemática, 2021, 12, 1-23.	0.1	0
136	Receptors in Health and Diseases: Purinergic Signaling in Parasites. Current Topics in Medicinal Chemistry, 2021, 21, 169-170.	2.1	0
137	O ENTORNO QUE NÃO VAI: UM ESTUDO DE CASO DO NÃO-PÚBLICO DE UM MUSEU DE CIÊNCIAS NO RIO I JANEIRO. Ensino Saude E Ambiente, 2016, 9, .	DE 0.1	0
138	O USO DO MICROSCÓPIO EM SALA DE AULA E A APRENDIZAGEM SOBRE CÉLULAS PARA ALUNOS DO 5º AN ESCOLAR. Ensino Saude E Ambiente, 2018, 11, .	10 _{0.1}	0
139	ESTUDANTES DIANTE DA PROBLEMATICA DOS RESÃDUOS SÓLIDOS URBANOS: UMA EXPERIÊNCIA EM UM CURSO TÉCNICO EM MEIO AMBIENTE Ensino Saude E Ambiente, 2019, 12, .	0.1	0
140	Os mediadores do Ciências Sob Tendas: análise de suas percepções acerca das contribuições de um museu de ciências universitário. Research, Society and Development, 2020, 9, .	0.1	0
141	Atividades investigativas como promotoras da argumentação no ensino de ciências. Research, Society and Development, 2022, 11, e51011125138.	0.1	0