
Rémi G Zallot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5897324/publications.pdf Version: 2024-02-01

PÃOMIC ZALLOT

#	Article	IF	CITATIONS
1	Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Current Opinion in Biotechnology, 2021, 69, 77-90.	6.6	35
2	Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme. Biochemistry, 2021, 60, 3152-3161.	2.5	7
3	The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry, 2019, 58, 4169-4182.	2.5	441
4	Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19126-19135.	7.1	36
5	Gene Graphics: a genomic neighborhood data visualization web application. Bioinformatics, 2018, 34, 1406-1408.	4.1	82
6	†Democratized' genomic enzymology web tools for functional assignment. Current Opinion in Chemical Biology, 2018, 47, 77-85.	6.1	112
7	Functional assignment of multiple catabolic pathways for d-apiose. Nature Chemical Biology, 2018, 14, 696-705.	8.0	26
8	Identification of a Novel Epoxyqueuosine Reductase Family by Comparative Genomics. ACS Chemical Biology, 2017, 12, 844-851.	3.4	40
9	The Escherichia coli COG1738 Member YhhQ Is Involved in 7-Cyanodeazaguanine (preQ0) Transport. Biomolecules, 2017, 7, 12.	4.0	48
10	Functional Annotations of Paralogs: A Blessing and a Curse. Life, 2016, 6, 39.	2.4	45
11	Arabidopsis <i>TH2</i> Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase. Plant Cell, 2016, 28, 2683-2696.	6.6	42
12	Systematic identification and analysis of frequent gene fusion events in metabolic pathways. BMC Genomics, 2016, 17, 473.	2.8	13
13	A family of metal-dependent phosphatases implicated in metabolite damage-control. Nature Chemical Biology, 2016, 12, 621-627.	8.0	48
14	Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis. Biochemical Journal, 2016, 473, 157-166.	3.7	22
15	Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae. Journal of Biological Chemistry, 2015, 290, 18678-18698.	3.4	70
16	Salvage of the thiamin pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. Biochemical Journal, 2014, 463, 145-155.	3.7	22
17	Plant, Animal, and Fungal Micronutrient Queuosine Is Salvaged by Members of the DUF2419 Protein Family. ACS Chemical Biology, 2014, 9, 1812-1825.	3.4	48
18	High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9645-9650.	7.1	69

RéMI G ZALLOT

#	Article	IF	CITATIONS
19	Identification of the thiamin salvage enzyme thiazole kinase in Arabidopsis and maize. Phytochemistry, 2013, 94, 68-73.	2.9	24
20	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
21	Identification of Mitochondrial Coenzyme A Transporters from Maize and Arabidopsis Â. Plant Physiology, 2013, 162, 581-588.	4.8	31
22	Polyphosphoinositides Are Enriched in Plant Membrane Rafts and Form Microdomains in the Plasma Membrane. Plant Physiology, 2010, 152, 2173-2187.	4.8	115
23	Acyl-Lipid Metabolism. The Arabidopsis Book, 2010, 8, e0133.	0.5	287