Peter J Lammers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5894854/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure. Resources, Conservation and Recycling, 2021, 170, 105564.	10.8	21
2	Recycle of nitrogen and phosphorus in hydrothermal liquefaction biochar from Galdieria sulphuraria to cultivate microalgae. Resources, Conservation and Recycling, 2021, 171, 105644.	10.8	19
3	Techno-economic and life-cycle assessment of fuel production from mixotrophic Galdieria sulphuraria microalgae on hydrolysate. Algal Research, 2021, 59, 102419.	4.6	22
4	Investigation of Balanced Feedstocks of Lipids and Proteins To Synthesize Highly Effective Rejuvenators for Oxidized Asphalt. ACS Sustainable Chemistry and Engineering, 2020, 8, 7656-7667.	6.7	41
5	Hydrothermal liquefaction of Cyanidioschyzon merolae and Salicornia bigelovii Torr.: The interaction effect on product distribution and chemistry. Fuel, 2020, 277, 118146.	6.4	34
6	Alterations in photosynthesis and energy reserves in Galdieria sulphuraria during corn stover hydrolysate supplementation. Bioresource Technology Reports, 2019, 7, 100269.	2.7	2
7	Evidence for induced allelopathy in an isolate of Coelastrella following co-culture with Chlorella sorokiniana. Algal Research, 2019, 41, 101535.	4.6	15
8	Nutrient-driven algal-bacterial dynamics in semi-continuous, pilot-scale photobioreactor cultivation of Nannochloropsis salina CCMP1776 with municipal wastewater nutrients. Algal Research, 2019, 39, 101457.	4.6	14
9	Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions. Biomass and Bioenergy, 2019, 120, 224-228.	5.7	41
10	The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. ELife, 2019, 8, .	6.0	50
11	Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Bioresource Technology, 2017, 236, 129-137.	9.6	54
12	Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 2017, 22, 166-186.	4.6	72
13	Remembering Milton Sommerfeld (1940-2017). Algal Research, 2017, 25, 576-577.	4.6	0
14	Hydrothermal liquefaction of Cyanidioschyzon merolae and the influence of catalysts on products. Bioresource Technology, 2017, 223, 91-97.	9.6	89
15	Removal of dissolved organic carbon and nutrients from urban wastewaters by Galdieria sulphuraria: Laboratory to field scale demonstration. Algal Research, 2017, 24, 450-456.	4.6	101
16	Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp Applied Energy, 2016, 165, 943-951.	10.1	125
17	Temperature-Dependent Lipid Conversion and Nonlipid Composition of Microalgal Hydrothermal Liquefaction Oils Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Bioenergy Research, 2015, 8, 1962-1972.	3.9	23
18	Algal-based, single-step treatment of urban wastewaters. Bioresource Technology, 2015, 189, 273-278.	9.6	80

Peter J Lammers

#	Article	IF	CITATIONS
19	Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Research, 2015, 12, 74-79.	4.6	41
20	Feasibility of algal systems for sustainable wastewater treatment. Renewable Energy, 2015, 82, 71-76.	8.9	51
21	High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel, 2014, 119, 47-56.	6.4	160
22	Nannochloropsis sp. algae for use as biofuel: Analyzing a translog production function using data from multiple sites in the southwestern United States. Algal Research, 2014, 6, 124-131.	4.6	4
23	Molecular diagnostics for monitoring contaminants in algal cultivation. Algal Research, 2014, 4, 41-51.	4.6	29
24	Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel, 2014, 133, 73-81.	6.4	89
25	Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20117-20122.	7.1	717
26	In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Bioresource Technology, 2013, 139, 308-315.	9.6	79
27	Power dissipation in microwave-enhanced in situ transesterification of algal biomass to biodiesel. Green Chemistry, 2012, 14, 809.	9.0	64
28	Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel, 2012, 97, 822-831.	6.4	171
29	Nannochloropsis production metrics in a scalable outdoor photobioreactor for commercial applications. Bioresource Technology, 2012, 117, 164-171.	9.6	124
30	Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresource Technology, 2011, 102, 1399-1405.	9.6	178
31	Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel, 2010, 89, 360-364.	6.4	150
32	Regulation of the Nitrogen Transfer Pathway in the Arbuscular Mycorrhizal Symbiosis: Gene Characterization and the Coordination of Expression with Nitrogen Flux Â. Plant Physiology, 2010, 153, 1175-1187.	4.8	152
33	Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2009, 181, 924-937.	7.3	165
34	Germinating spores of <i>Glomus intraradices</i> can use internal and exogenous nitrogen sources for <i>de novo</i> biosynthesis of amino acids. New Phytologist, 2009, 184, 399-411.	7.3	41
35	Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2008, 178, 672-687.	7.3	120
36	Root exudates stimulate the uptake and metabolism of organic carbon in germinating spores of <i>Glomus intraradices</i> . New Phytologist, 2008, 180, 684-695.	7.3	48

Peter J Lammers

#	Article	IF	CITATIONS
37	The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist, 2005, 168, 687-696.	7.3	260
38	Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435, 819-823.	27.8	876
39	Alkane-induced expression, substrate binding profile, and immunolocalization of a cytochrome P450 encoded on the nifD excision element of Anabaena 7120. BMC Microbiology, 2005, 5, 16.	3.3	11
40	BLAST Filter and GraphAlign: rule-based formation and analysis of sets of related DNA and protein sequences. Nucleic Acids Research, 2004, 32, W26-W32.	14.5	14
41	Symbiotic sequencing for the Populus mesocosm. New Phytologist, 2004, 161, 330-335.	7.3	105
42	Symbiotic signaling: new functions for familiar proteins. New Phytologist, 2004, 161, 324-326.	7.3	12
43	Nitrogen status modulates the expression of RNA-binding proteins in cyanobacteria. FEMS Microbiology Letters, 2003, 227, 203-210.	1.8	16
44	Carbon Export from Arbuscular Mycorrhizal Roots Involves the Translocation of Carbohydrate as well as Lipid. Plant Physiology, 2003, 131, 1496-1507.	4.8	227
45	Translocation and Utilization of Fungal Storage Lipid in the Arbuscular Mycorrhizal Symbiosis. Plant Physiology, 2002, 128, 108-124.	4.8	228
46	Translocation and Utilization of Fungal Storage Lipid in the Arbuscular Mycorrhizal Symbiosis. Plant Physiology, 2002, 128, 108-124.	4.8	38
47	Title is missing!. Plant and Soil, 2002, 244, 189-197.	3.7	68
48	Title is missing!. Plant and Soil, 2002, 244, 141-148.	3.7	25
49	Tracking metabolism and imaging transport in arbuscular mycorrhizal fungi. , 2002, , 189-197.		10
50	Expression in an arbuscular mycorrhizal fungus of genes putatively involved in metabolism, transport, the cytoskeleton and the cell cycle. , 2002, , 141-148.		0
51	Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology, 2002, 128, 108-24.	4.8	58
52	The Glyoxylate Cycle in an Arbuscular Mycorrhizal Fungus. Carbon Flux and Gene Expression. Plant Physiology, 2001, 127, 1287-1298.	4.8	88
53	An Osmotic Stress Protein of Cyanobacteria Is Immunologically Related to Plant Dehydrins. Plant Physiology, 1993, 101, 773-779.	4.8	128
54	The structure of aPhaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Molecular Biology, 1991, 17, 499-504.	3.9	59

#	Article	IF	CITATIONS
55	Developmental rearrangement of cyanobacterial nitrogen-fixation genes. Trends in Genetics, 1986, 2, 255-259.	6.7	56
56	Sequence of the nifD gene coding for the subunit of dinitrogenase from the cyanobacterium Anabaena. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 4723-4727.	7.1	82