Ye-Hong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5893070/publications.pdf

Version: 2024-02-01

55	1,536	25	38
papers	citations	h-index	g-index
57	57	57	423
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Physical Review Research, 2022, 4, .	3.6	43
2	Detecting a single atom in a cavity using the \ddot{l} ‡(2) nonlinear medium. Frontiers of Physics, 2022, 17, 1.	5.0	3
3	Shortcuts to Adiabaticity for the Quantum Rabi Model: Efficient Generation of Giant Entangled Cat States via Parametric Amplification. Physical Review Letters, 2021, 126, 023602.	7.8	88
4	Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping. Physical Review A, $2021,103,103$	2.5	29
5	Fast binomial-code holonomic quantum computation with ultrastrong light-matter coupling. Physical Review Research, 2021, 3, .	3.6	27
6	Two-level systems with periodic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -step driving fields: Exact dynamics and quantum state manipulations. Physical Review A, 2021, 104, .	2.5	16
7	Effective pulse reverse-engineering for strong field–matter interaction. Optics Letters, 2020, 45, 3597.	3.3	11
8	Strong spin squeezing induced by weak squeezing of light inside a cavity. Nanophotonics, 2020, 9, 4853-4868.	6.0	27
9	Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification. Physical Review A, 2019, 100 , .	2.5	29
10	Oneâ€Step Implementation of N â€Qubit Nonadiabatic Holonomic Quantum Gates with Superconducting Qubits via Inverse Hamiltonian Engineering. Annalen Der Physik, 2019, 531, 1800427.	2.4	9
11	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .	2.5	34
12	Nonadiabatic holonomic quantum computation using Rydberg blockade. Physical Review A, 2018, 97, .	2.5	63
13	Accelerating Population Transfer in a Transmon Qutrit Via Shortcuts to Adiabaticity. Annalen Der Physik, 2018, 530, 1700351.	2.4	11
14	Quantum state transfer in spin chains via shortcuts to adiabaticity. Physical Review A, 2018, 97, .	2.5	30
15	Accelerated and noise-resistant generation of high-fidelity steady-state entanglement with Rydberg atoms. Physical Review A, 2018, 97, .	2.5	33
16	Pulse design for multilevel systems by utilizing Lie transforms. Physical Review A, 2018, 97, .	2.5	27
17	High-fidelity generating multi-qubit W state via dressed states in the system of multiple resonators coupled with a superconducting qubit. Canadian Journal of Physics, 2018, 96, 81-89.	1.1	1
18	Improving Shortcuts to Nonâ€Hermitian Adiabaticity for Fast Population Transfer in Open Quantum Systems. Annalen Der Physik, 2018, 530, 1700247.	2.4	11

#	Article	IF	Citations
19	Efficient implementation of arbitrary quantum state engineering in four-state system by counterdiabatic driving. Laser Physics Letters, 2018, 15, 075201.	1.4	1
20	Accelerating adiabatic quantum transfer for three-level <mml:math altimg="si48.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i></mml:mi></mml:math> -type structure systems via picture transformation. Annals of Physics, 2017, 379, 102-111.	2.8	3
21	Generation of three-qubit Greenberger–Horne–Zeilinger state of superconducting qubits via transitionless quantum driving. Laser Physics, 2017, 27, 015202.	1.2	8
22	Rapid generation of a three-dimensional entangled state for two atoms trapped in a cavity via shortcuts to adiabatic passage. Quantum Information Processing, 2017, 16, 1.	2.2	8
23	Protecting Quantum State in Timeâ€Dependent Decoherenceâ€Free Subspaces Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700186.	2.4	10
24	Invariantâ€Based Pulse Design for Threeâ€Level Systems Without the Rotatingâ€Wave Approximation. Annalen Der Physik, 2017, 529, 1700004.	2.4	9
25	Perfect quantum state engineering by the combination of the counterdiabatic driving and the reverse-engineering technique. Annals of Physics, 2017, 385, 40-56.	2.8	2
26	Fast quantum state engineering via universal SU(2) transformation. Physical Review A, 2017, 96, .	2.5	34
27	Complete Bell-state analysis for superconducting-quantum-interference-device qubits with a transitionless tracking algorithm. Physical Review A, 2017, 96, .	2.5	34
28	Generation of three-qubit Greenberger–Horne–Zeilinger states of superconducting qubits by using dressed states. Quantum Information Processing, 2017, 16, 1.	2.2	7
29	Optimal shortcut approach based on an easily obtained intermediate Hamiltonian. Physical Review A, 2017, 95, .	2.5	36
30	Coherent control in quantum open systems: An approach for accelerating dissipation-based quantum state generation. Physical Review A, 2017, 96, .	2.5	16
31	Improving the stimulated Raman adiabatic passage via dissipative quantum dynamics. Optics Express, 2016, 24, 22847.	3.4	30
32	Reverse engineering of a Hamiltonian by designing the evolution operators. Scientific Reports, 2016, 6, 30151.	3.3	42
33	Fast generation of three-atom singlet state by transitionless quantum driving. Scientific Reports, 2016, 6, 22202.	3.3	44
34	Fast CNOT gate via shortcuts to adiabatic passage. Journal of Modern Optics, 2016, 63, 1943-1951.	1.3	2
35	Fast controlled preparation of two-atom maximally entangled state and N-atom W state in the direct coupled cavity systems via shortcuts to adiabatic passage. European Physical Journal D, 2016, 70, 1.	1.3	10
36	Transitionless-based shortcuts for the fast and robust generation of W states. Optics Communications, 2016, 380, 140-147.	2.1	27

#	Article	IF	Citations
37	Reverse engineering of a nonlossy adiabatic Hamiltonian for non-Hermitian systems. Physical Review A, 2016, 94, .	2.5	15
38	Fast generation of three-qubit Greenberger-Horne-Zeilinger state based on the Lewis-Riesenfeld invariants in coupled cavities. Scientific Reports, 2016, 6, 25707.	3.3	12
39	Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Physical Review A, 2016, 93, .	2.5	93
40	Fast preparation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>W</mml:mi></mml:math> states with superconducting quantum interference devices by using dressed states. Physical Review A, 2016, 94, .	2.5	77
41	Fast generation of W states of superconducting qubits with multiple SchrĶdinger dynamics. Scientific Reports, 2016, 6, 36737.	3.3	43
42	Shortcuts to adiabatic passage for fast preparation of multipartite entanglement among atomic ensembles. European Physical Journal D, 2016, 70, 1.	1.3	5
43	Fast generating Greenberger–Horne–Zeilinger state via iterative interaction pictures. Laser Physics Letters, 2016, 13, 105202.	1.4	23
44	Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving. Quantum Information Processing, 2016, 15, 2359-2376.	2.2	22
45	Deterministic generation of singlet state ofNatoms in coupled cavities via adiabatic passage of a dark state. Journal of Modern Optics, 2016, 63, 92-102.	1.3	2
46	Deterministic Generation of a Four-Atom Entangled State in a Two-Dimensional Coupled-Cavity System. International Journal of Theoretical Physics, 2016, 55, 1192-1200.	1.2	6
47	Arbitrary quantum state engineering in three-state systems via Counterdiabatic driving. Scientific Reports, 2016, 6, 38484.	3.3	25
48	Shortcuts to adiabatic passage for fast generation of Greenberger-Horne-Zeilinger states by transitionless quantum driving. Scientific Reports, 2015, 5, 15616.	3.3	57
49	Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states. Physical Review A, 2015, 91, .	2.5	124
50	One-step deterministic generation of <i>N</i> -atom Greenbergerâ€"Horneâ€"Zeilinger states in separate coupled cavities via quantum Zeno dynamics. Journal of Modern Optics, 2015, 62, 1591-1599.	1.3	4
51	Generation of multi-atom entangled states in coupled cavities via transitionless quantum driving. Quantum Information Processing, 2015, 14, 4475-4492.	2.2	13
52	Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states' preparation and transition. Laser Physics Letters, 2014, 11, 115201.	1.4	43
53	Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Physical Review A, 2014, 89, .	2.5	132
54	Deterministic generation of singlet states for \$\$N\$\$ N -atoms in coupled cavities via quantum Zeno dynamics. Quantum Information Processing, 2014, 13, 1857-1877.	2.2	14

#	Article	IF	CITATIONS
55	Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Information Processing, 2013, 12, 3771-3783.	2.2	11