Prashant K Jain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5892151/publications.pdf

Version: 2024-02-01

		36203	19690
113	25,139	51	117
papers	citations	h-index	g-index
122	122	122	28249
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:Â Applications in Biological Imaging and Biomedicine. Journal of Physical Chemistry B, 2006, 110, 7238-7248.	1.2	3,896
2	Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 2008, 41, 1578-1586.	7.6	3,680
3	Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23, 217-228.	1.0	1,950
4	Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nature Materials, 2011, 10, 361-366.	13.3	1,520
5	On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Letters, 2007, 7, 2080-2088.	4.5	1,415
6	Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2007, 2, 681-693.	1.7	1,231
7	Review of Some Interesting Surface Plasmon Resonance-enhanced Properties of Noble Metal Nanoparticles and Their Applications to Biosystems. Plasmonics, 2007, 2, 107-118.	1.8	1,119
8	Au nanoparticles target cancer. Nano Today, 2007, 2, 18-29.	6.2	995
9	Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters, 2010, 487, 153-164.	1.2	798
10	Plasmon Coupling in Nanorod Assemblies: Â Optical Absorption, Discrete Dipole Approximation Simulation, and Exciton-Coupling Model. Journal of Physical Chemistry B, 2006, 110, 18243-18253.	1.2	754
11	Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chemical Society Reviews, 2013, 42, 89-96.	18.7	443
12	Determination of the Minimum Temperature Required for Selective Photothermal Destruction of Cancer Cells with the Use of Immunotargeted Gold Nanoparticles. Photochemistry and Photobiology, 2006, 82, 412.	1.3	369
13	Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO ₂ Reduction on Au Nanoparticles. Nano Letters, 2018, 18, 2189-2194.	4.5	358
14	Coupling of Optical Resonances in a Compositionally Asymmetric Plasmonic Nanoparticle Dimer. Nano Letters, 2010, 10, 2655-2660.	4.5	351
15	Universal Scaling of Plasmon Coupling in Metal Nanostructures:  Extension from Particle Pairs to Nanoshells. Nano Letters, 2007, 7, 2854-2858.	4.5	285
16	Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Letters, 2009, 9, 1644-1650.	4.5	281
17	Harvesting multiple electron–hole pairs generated through plasmonic excitation of Au nanoparticles. Nature Chemistry, 2018, 10, 763-769.	6.6	278
18	Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Letters, 2008, 8, 4347-4352.	4.5	258

#	Article	IF	CITATIONS
19	Plasmon Resonances of Semiconductor Nanocrystals: Physical Principles and New Opportunities. Journal of Physical Chemistry Letters, 2014, 5, 976-985.	2.1	258
20	Nanoheterostructure Cation Exchange: Anionic Framework Conservation. Journal of the American Chemical Society, 2010, 132, 9997-9999.	6.6	253
21	Ultrafast Cooling of Photoexcited Electrons in Gold Nanoparticleâ^'Thiolated DNA Conjugates Involves the Dissociation of the Goldâ^'Thiol Bond. Journal of the American Chemical Society, 2006, 128, 2426-2433.	6.6	211
22	Surface Plasmon Coupling and Its Universal Size Scaling in Metal Nanostructures of Complex Geometry:  Elongated Particle Pairs and Nanosphere Trimers. Journal of Physical Chemistry C, 2008, 112, 4954-4960.	1.5	195
23	Plasmon resonances for solar energy harvesting: A mechanistic outlook. Nano Today, 2015, 10, 67-80.	6.2	190
24	Activation Energies of Plasmonic Catalysts. Nano Letters, 2016, 16, 3399-3407.	4.5	190
25	Surface Plasmon Resonance Sensitivity of Metal Nanostructures:  Physical Basis and Universal Scaling in Metal Nanoshells. Journal of Physical Chemistry C, 2007, 111, 17451-17454.	1.5	170
26	Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Letters, 2017, 2, 2058-2070.	8.8	168
27	Watching Visible Light-Driven CO ₂ Reduction on a Plasmonic Nanoparticle Catalyst. ACS Nano, 2018, 12, 8330-8340.	7.3	148
28	Plasmonic photosynthesis of C1 \hat{a} e"C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nature Communications, 2019, 10, 2022.	5 . 8	142
29	The Effect of Plasmon Field on the Coherent Lattice Phonon Oscillation in Electron-Beam Fabricated Gold Nanoparticle Pairs. Nano Letters, 2007, 7, 3227-3234.	4.5	141
30	Taking the Heat Off of Plasmonic Chemistry. Journal of Physical Chemistry C, 2019, 123, 24347-24351.	1.5	123
31	Doped Nanocrystals as Plasmonic Probes of Redox Chemistry. Angewandte Chemie - International Edition, 2013, 52, 13671-13675.	7.2	120
32	Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium–Silver Alloy Nanotubes. Angewandte Chemie - International Edition, 2019, 58, 8794-8798.	7.2	120
33	Ultrafast Electron Relaxation Dynamics in Coupled Metal Nanoparticles in Aggregates. Journal of Physical Chemistry B, 2006, 110, 136-142.	1.2	112
34	Size Dependence of a Temperature-Induced Solid–Solid Phase Transition in Copper(I) Sulfide. Journal of Physical Chemistry Letters, 2011, 2, 2402-2406.	2.1	111
35	Near-field manipulation of spectroscopic selection rules on the nanoscale. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8016-8019.	3.3	92
36	A DFT-Based Study of the Low-Energy Electronic Structures and Properties of Small Gold Clusters. Structural Chemistry, 2005, 16, 421-426.	1.0	80

#	Article	IF	CITATIONS
37	Quantitative Analysis of Localized Surface Plasmons Based on Molecular Probing. ACS Nano, 2010, 4, 4579-4586.	7.3	78
38	The impact of the competence quorum sensing system on Streptococcus pneumoniaebiofilms varies depending on the experimental model. BMC Microbiology, 2011, 11, 75.	1.3	74
39	A rich catalog of C–C bonded species formed in CO2 reduction on a plasmonic photocatalyst. Nature Communications, 2021, 12, 2612.	5 . 8	73
40	Liquid-like cationic sub-lattice in copper selenide clusters. Nature Communications, 2017, 8, 14514.	5. 8	71
41	Plasmons in Photocharged ZnO Nanocrystals Revealing the Nature of Charge Dynamics. Journal of Physical Chemistry Letters, 2013, 4, 3024-3030.	2.1	69
42	Size Dependence of the Plasmonic Near-Field Measured via Single-Nanoparticle Photoimaging. Journal of Physical Chemistry C, 2013, 117, 10669-10676.	1.5	68
43	Identification of a Critical Intermediate in Galvanic Exchange Reactions by Singleâ∈Nanoparticleâ∈Resolved Kinetics. Angewandte Chemie - International Edition, 2014, 53, 2867-2872.	7.2	68
44	Highly Luminescent Nanocrystals From Removal of Impurity Atoms Residual From Ionâ€Exchange Synthesis. Angewandte Chemie - International Edition, 2012, 51, 2387-2390.	7.2	66
45	Probing Redox Photocatalysis of Trapped Electrons and Holes on Single Sb-doped Titania Nanorod Surfaces. Journal of the American Chemical Society, 2012, 134, 3946-3949.	6.6	64
46	The Ligand Shell as an Energy Barrier in Surface Reactions on Transition Metal Nanoparticles. Journal of the American Chemical Society, 2016, 138, 6765-6773.	6.6	61
47	Plasmon-Enhanced Multicarrier Photocatalysis. Nano Letters, 2018, 18, 4370-4376.	4.5	58
48	Spatially Indirect Emission in a Luminescent Nanocrystal Molecule. Nano Letters, 2011, 11, 2358-2362.	4. 5	57
49	Co-operativity in a nanocrystalline solid-state transition. Nature Communications, 2013, 4, 2933.	5 . 8	57
50	Light-Induced Voltages in Catalysis by Plasmonic Nanostructures. Accounts of Chemical Research, 2020, 53, 1773-1781.	7.6	56
51	Mechanistic Understanding of Plasmon-Enhanced Electrochemistry. Journal of Physical Chemistry C, 2019, 123, 29360-29369.	1.5	54
52	The Nature of Plasmonically Assisted Hot-Electron Transfer in a Donor–Bridge–Acceptor Complex. ACS Catalysis, 2017, 7, 4360-4365.	5 . 5	53
53	Plasmonics with Doped Quantum Dots. Israel Journal of Chemistry, 2012, 52, 983-991.	1.0	52
54	Single-Nanocrystal Reaction Trajectories Reveal Sharp Cooperative Transitions. Nano Letters, 2014, 14, 987-992.	4.5	52

#	Article	IF	CITATIONS
55	The Chemical Potential of Plasmonic Excitations. Angewandte Chemie - International Edition, 2020, 59, 2085-2088.	7.2	51
56	Unified Theoretical Framework for Realizing Diverse Regimes of Strong Coupling between Plasmons and Electronic Transitions. Journal of Physical Chemistry C, 2014, 118, 2710-2717.	1.5	50
57	Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances. Journal of Physical Chemistry Letters, 2014, 5, 3112-3119.	2.1	49
58	Controlling Localized Surface Plasmon Resonances in GeTe Nanoparticles Using an Amorphous-to-Crystalline Phase Transition. Physical Review Letters, 2013, 111, 037401.	2.9	48
59	Roadmap on quantum nanotechnologies. Nanotechnology, 2021, 32, 162003.	1.3	45
60	A regenerable oxide-based H2S adsorbent with nanofibrous morphology. Nature Nanotechnology, 2012, 7, 810-815.	15.6	44
61	Selective Branching of Plasmonic Photosynthesis into Hydrocarbon Production and Hydrogen Generation. ACS Energy Letters, 2019, 4, 2295-2300.	8.8	44
62	In Situ Singleâ€Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angewandte Chemie - International Edition, 2016, 55, 9979-9983.	7.2	42
63	Ammonia Oxidation Enhanced by Photopotential Generated by Plasmonic Excitation of a Bimetallic Electrocatalyst. Angewandte Chemie - International Edition, 2020, 59, 18430-18434.	7.2	42
64	Nanoscale optical imaging in chemistry. Chemical Society Reviews, 2020, 49, 6087-6112.	18.7	40
65	Plasmon-Assisted Ammonia Electrosynthesis. Journal of the American Chemical Society, 2022, 144, 10743-10751.	6.6	38
66	InÂsitu formation of catalytically active graphene in ethylene photo-epoxidation. Nature Communications, 2018, 9, 3056.	5.8	37
67	Luminescence Blinking of a Reacting Quantum Dot. Nano Letters, 2015, 15, 2504-2509.	4.5	33
68	Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium–Silver Alloy Nanotubes. Angewandte Chemie, 2019, 131, 8886-8890.	1.6	33
69	Control of Chemical Reaction Pathways by Light–Matter Coupling. Annual Review of Physical Chemistry, 2021, 72, 423-443.	4.8	30
70	Ion Exchange Transformation of Magic-Sized Clusters. Chemistry of Materials, 2016, 28, 8391-8398.	3.2	27
71	Using plasmonically generated carriers as redox equivalents. MRS Bulletin, 2020, 45, 43-48.	1.7	25
72	Photoinduced Electron and Energy Transfer Pathways and Photocatalytic Mechanisms in Hybrid Plasmonic Photocatalysis. Advanced Optical Materials, 2021, 9, 2101128.	3.6	25

#	Article	IF	CITATIONS
73	Plasmonic Spheroidal Metal Nanoshells Showing Larger Tunability and Stronger Near Fields Than Their Spherical Counterparts: An Effect of Enhanced Plasmon Coupling. Journal of Physical Chemistry Letters, 2011, 2, 374-378.	2.1	23
74	Mechanism of sulfidation of small zinc oxide nanoparticles. RSC Advances, 2018, 8, 34476-34482.	1.7	23
7 5	Comment on "Thermal effects – an alternative mechanism for plasmon-assisted photocatalysis―by Y. Dubi, I. W. Un and Y. Sivan, <i>Chem. Sci.</i> , 2020, 11 , 5017. Chemical Science, 2020, 11, 9022-9023.	3.7	23
76	Off-Resonant Optical Excitation of Gold Nanorods: Nanoscale Imprint of Polarization Surface Charge Distribution. Journal of Physical Chemistry Letters, 2011, 2, 7-11.	2.1	22
77	Structural Dynamics of the Oxygen-Evolving Complex of Photosystem II in Water-Splitting Action. Journal of the American Chemical Society, 2018, 140, 5853-5859.	6.6	21
78	In-situ electron microscopy mapping of an order-disorder transition in a superionic conductor. Nature Communications, 2019, 10, 1505.	5.8	19
79	Isotope Effects in Plasmonic Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22480-22483.	7.2	19
80	Synthesis of Monodisperse Palladium Nanoclusters Using Metal–Organic Frameworks as Sacrificial Templates. ChemNanoMat, 2016, 2, 810-815.	1.5	18
81	Polarization-Dependent Surface-Enhanced Raman Scattering Activity of Anisotropic Plasmonic Nanorattles. Journal of Physical Chemistry C, 2016, 120, 16899-16906.	1.5	18
82	Kinetics of self-assembled monolayer formation on individual nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 23990-23997.	1.3	16
83	Regioselective Plasmonic Coupling in Metamolecular Analogs of Benzene Derivatives. Nano Letters, 2015, 15, 542-548.	4.5	15
84	Galvanic reactions at the single-nanoparticle level: tuning between mechanistic extremes. Journal of Materials Chemistry A, 2017, 5, 11940-11948.	5.2	15
85	Ultrashort, Angstrom-Scale Decay of Surface-Enhanced Raman Scattering at Hot Spots. Journal of Physical Chemistry C, 2016, 120, 24973-24981.	1.5	14
86	Synergistic Photochemistry of Alcohols Catalyzed by Plasmonic Nanoparticles and a Metal Complex. ACS Energy Letters, 2021, 6, 1980-1989.	8.8	14
87	One-to-One Correlation between Structure and Optical Response in a Heterogeneous Distribution of Plasmonic Constructs. Journal of Physical Chemistry C, 2015, 119, 24086-24094.	1.5	13
88	Room-temperature superionic-phase nanocrystals synthesized with a twinned lattice. Nature Communications, 2019, 10, 3285.	5.8	13
89	Ammonia Oxidation Enhanced by Photopotential Generated by Plasmonic Excitation of a Bimetallic Electrocatalyst. Angewandte Chemie, 2020, 132, 18588-18592.	1.6	13
90	A Non-Natural Wurtzite Polymorph of HgSe: A Potential 3D Topological Insulator. Chemistry of Materials, 2017, 29, 6356-6366.	3.2	12

#	Article	IF	CITATIONS
91	Strain Stabilization of Superionicity in Copper and Lithium Selenides. Journal of Physical Chemistry Letters, 2018, 9, 1200-1205.	2.1	12
92	Catalytic Activation of a Solid Oxide in Electronic Contact With Gold Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 992-997.	7.2	11
93	STM Imaging of Localized Surface Plasmons on Individual Gold Nanoislands. Journal of Physical Chemistry Letters, 2018, 9, 1970-1976.	2.1	11
94	Lithiation of Copper Selenide Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 9315-9319.	7.2	11
95	The Chemical Potential of Plasmonic Excitations. Angewandte Chemie, 2020, 132, 2101-2104.	1.6	11
96	Spectral Heterogeneity of Hybrid Lead Halide Perovskites Demystified by Spatially Resolved Emission. Journal of Physical Chemistry C, 2017, 121, 19392-19400.	1.5	10
97	Oneâ€Dimensional Cuprous Selenide Nanostructures with Switchable Plasmonic and Superâ€ionic Phase Attributes. Angewandte Chemie - International Edition, 2019, 58, 8410-8415.	7.2	9
98	Unconventional Long-Range Cation Ordering in Copper Selenide Nanocrystals. Chemistry of Materials, 2019, 31, 68-72.	3.2	8
99	In Situ Singleâ€Nanoparticle Spectroscopy Study of Bimetallic Nanostructure Formation. Angewandte Chemie, 2016, 128, 10133-10137.	1.6	7
100	Plasmon Resonances and Structures of Chalcogenide Alloy Nanocrystals. Chemistry of Materials, 2022, 34, 4992-4999.	3.2	6
101	Revealing the Thermodynamic Properties of Elementary Chemical Reactions at the Single-Molecule Level. Journal of Physical Chemistry B, 2019, 123, 6253-6259.	1.2	5
102	Motion of Defects in Ion-Conducting Nanowires. Nano Letters, 2021, 21, 556-561.	4.5	5
103	Isotope Effects in Plasmonic Photosynthesis. Angewandte Chemie, 2020, 132, 22666-22669.	1.6	4
104	Stochastic Noise in Single-Nanoparticle Catalysis. Journal of Physical Chemistry C, 2021, 125, 17734-17741.	1.5	4
105	Lithiation of Copper Selenide Nanocrystals. Angewandte Chemie, 2018, 130, 9459-9463.	1.6	3
106	Physical models for energy-converting nanofluids. Physics Today, 2018, 71, 10-11.	0.3	2
107	Ab Initio Investigation of Cooperativity in Ion Exchange. Journal of Physical Chemistry C, 2020, 124, 25615-25620.	1.5	2
108	Crystal Symmetry, Strain, and Facet-Dependent Nature of Topological Surface States in Mercury Selenide. Journal of Physical Chemistry C, 2020, 124, 10344-10352.	1.5	2

#	Article	IF	CITATIONS
109	Room-temperature catalyst-free methane chlorination. Cell Reports Physical Science, 2021, 2, 100545.	2.8	2
110	Oneâ€Dimensional Cuprous Selenide Nanostructures with Switchable Plasmonic and Superâ€ionic Phase Attributes. Angewandte Chemie, 2019, 131, 8498-8503.	1.6	1
111	(Invited) Multi-Electron Harvesting and Catalysis Using Plasmonic Nanoparticles: A Mechanistic Understanding. ECS Meeting Abstracts, 2019, , .	0.0	O
112	(Invited) Plasmonic Photosynthesis. ECS Meeting Abstracts, 2019, , .	0.0	0
113	(Invited) Plasmon Excitation-Driven Reduction and Coupling of Carbon Dioxide Molecules. ECS Meeting Abstracts, 2019, , .	0.0	0