Wenjian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891744/publications.pdf

Version: 2024-02-01

95 7,416 36
papers citations h-index

36 82 h-index g-index

58581

98 98
all docs docs citations

98 times ranked 8164 citing authors

#	Article	IF	Citations
1	Deletion of <i>IKZF1 </i> and Prognosis in Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2009, 360, 470-480.	27.0	1,260
2	Gene-Expression Patterns in Drug-Resistant Acute Lymphoblastic Leukemia Cells and Response to Treatment. New England Journal of Medicine, 2004, 351, 533-542.	27.0	565
3	Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nature Genetics, 2009, 41, 1001-1005.	21.4	459
4	NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nature Genetics, 2016, 48, 367-373.	21.4	389
5	Inherited <i>NUDT15</i> Variant Is a Genetic Determinant of Mercaptopurine Intolerance in Children With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2015, 33, 1235-1242.	1.6	369
6	Multiplex assessment of protein variant abundance by massively parallel sequencing. Nature Genetics, 2018, 50, 874-882.	21.4	323
7	Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nature Genetics, 2013, 45, 1494-1498.	21.4	264
8	Association of an Inherited Genetic Variant With Vincristine-Related Peripheral Neuropathy in Children With Acute Lymphoblastic Leukemia. JAMA - Journal of the American Medical Association, 2015, 313, 815.	7.4	234
9	Novel Susceptibility Variants at 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethnically Diverse Populations. Journal of the National Cancer Institute, 2013, 105, 733-742.	6.3	208
10	Genome-wide Interrogation of Germline Genetic Variation Associated With Treatment Response in Childhood Acute Lymphoblastic Leukemia. JAMA - Journal of the American Medical Association, 2009, 301, 393.	7.4	193
11	Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood, 2011, 118, 5218-5226.	1.4	180
12	Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood, 2013, 121, 898-904.	1.4	174
13	<i>ARID5B</i> Genetic Polymorphisms Contribute to Racial Disparities in the Incidence and Treatment Outcome of Childhood Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2012, 30, 751-757.	1.6	165
14	Germline genetic variation in ETV6 and risk of childhood acute lymphoblastic leukaemia: a systematic genetic study. Lancet Oncology, The, 2015, 16, 1659-1666.	10.7	161
15	Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 33, 937-948.e8.	16.8	142
16	Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. Journal of Clinical Investigation, 2005, 115, 110-117.	8.2	129
17	NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nature Genetics, 2015, 47, 607-614.	21.4	126
18	<i>TP53</i> Germline Variations Influence the Predisposition and Prognosis of B-Cell Acute Lymphoblastic Leukemia in Children. Journal of Clinical Oncology, 2018, 36, 591-599.	1.6	121

#	Article	IF	Citations
19	A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood, 2015, 125, 680-686.	1.4	110
20	Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood, 2012, 120, 4197-4204.	1.4	103
21	Genetics of glucocorticoid-associated osteonecrosis in children with acute lymphoblastic leukemia. Blood, 2015, 126, 1770-1776.	1.4	102
22	Massively parallel variant characterization identifies <i>NUDT15</i> alleles associated with thiopurine toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5394-5401.	7.1	95
23	Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood, 2017, 130, 1209-1212.	1.4	90
24	Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2016, 34, 2133-2140.	1.6	88
25	HLA-DRB1*07:01 is associated with a higher risk of asparaginase allergies. Blood, 2014, 124, 1266-1276.	1.4	84
26	Enhancer Hijacking Drives Oncogenic <i>BCL11B</i> Expression in Lineage-Ambiguous Stem Cell Leukemia. Cancer Discovery, 2021, 11, 2846-2867.	9.4	83
27	Outcome of children with hypodiploid ALL treated with risk-directed therapy based on MRD levels. Blood, 2015, 126, 2896-2899.	1.4	76
28	In Vivo Response to Methotrexate Forecasts Outcome of Acute Lymphoblastic Leukemia and Has a Distinct Gene Expression Profile. PLoS Medicine, 2008, 5, e83.	8.4	75
29	Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children. Nature Communications, 2015, 6, 7553.	12.8	72
30	Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nature Cancer, 2021, 2, 284-299.	13.2	70
31	Antibodies Predict Pegaspargase Allergic Reactions and Failure of Rechallenge. Journal of Clinical Oncology, 2019, 37, 2051-2061.	1.6	61
32	Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nature Communications, 2019, 10, 5348.	12.8	58
33	Genetic risk factors for the development of osteonecrosis in children under age 10 treated for acute lymphoblastic leukemia. Blood, 2016, 127, 558-564.	1.4	56
34	Acquired variation outweighs inherited variation in whole genome analysis of methotrexate polyglutamate accumulation in leukemia. Blood, 2009, 113, 4512-4520.	1.4	52
35	Novel susceptibility variants at the ERG locus for childhood acute lymphoblastic leukemia in Hispanics. Blood, 2019, 133, 724-729.	1.4	44
36	Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. Nature Cancer, 2020, 1, 329-344.	13.2	44

#	Article	lF	Citations
37	Preclinical evaluation of NUDT15-guided thiopurine therapy and its effects on toxicity and antileukemic efficacy. Blood, 2018, 131, 2466-2474.	1.4	43
38	Neurocognitive Functioning of Children Treated for High-Risk B-Acute Lymphoblastic Leukemia Randomly Assigned to Different Methotrexate and Corticosteroid Treatment Strategies: A Report From the Children's Oncology Group. Journal of Clinical Oncology, 2017, 35, 2700-2707.	1.6	38
39	Asparaginase formulation impacts hypertriglyceridemia during therapy for acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2020, 67, e28040.	1.5	38
40	Inherited genetic susceptibility to acute lymphoblastic leukemia in Down syndrome. Blood, 2019, 134, 1227-1237.	1.4	37
41	Molecular basis of <i>ETV6</i> -mediated predisposition to childhood acute lymphoblastic leukemia. Blood, 2021, 137, 364-373.	1.4	37
42	Trypsin-encoding <i>PRSS1-PRSS2</i> variations influence the risk of asparaginase-associated pancreatitis in children with acute lymphoblastic leukemia: a Ponte di Legno toxicity working group report. Haematologica, 2019, 104, 556-563.	3 . 5	36
43	Association of Genetic Ancestry With the Molecular Subtypes and Prognosis of Childhood Acute Lymphoblastic Leukemia. JAMA Oncology, 2022, 8, 354.	7.1	35
44	Genome-Wide Association Study of Susceptibility Loci for T-Cell Acute Lymphoblastic Leukemia in Children. Journal of the National Cancer Institute, 2019, 111, 1350-1357.	6.3	32
45	Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. Nature Genetics, 2022, 54, 170-179.	21.4	29
46	Germline RUNX1 variation and predisposition to childhood acute lymphoblastic leukemia. Journal of Clinical Investigation, $2021,131,.$	8.2	20
47	Pharmacogenomics of intracellular methotrexate polyglutamates in patients' leukemia cells in vivo. Journal of Clinical Investigation, 2020, 130, 6600-6615.	8.2	18
48	Association of <i>GATA3 </i> Polymorphisms With Minimal Residual Disease and Relapse Risk in Childhood Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2021, 113, 408-417.	6.3	16
49	Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia, 2021, 35, 3078-3091.	7.2	15
50	Individual-specific functional epigenomics reveals genetic determinants of adverse metabolic effects of glucocorticoids. Cell Metabolism, 2021, 33, 1592-1609.e7.	16.2	15
51	Race, Genotype, and Azathioprine Discontinuation. Annals of Internal Medicine, 2022, 175, 1092-1099.	3.9	14
52	Identification of small molecules that mitigate vincristineâ€induced neurotoxicity while sensitizing leukemia cells to vincristine. Clinical and Translational Science, 2021, 14, 1490-1504.	3.1	12
53	Palmarâ€plantar erythrodysesthesia syndrome following treatment with highâ€dose methotrexate or highâ€dose cytarabine. Cancer, 2017, 123, 3602-3608.	4.1	11
54	NUDT15 polymorphism influences the metabolism and therapeutic effects of acyclovir and ganciclovir. Nature Communications, 2021, 12, 4181.	12.8	11

#	Article	IF	CITATIONS
55	Challenges in clinical implementation of CYP2D6 genotyping: choice of variants to test affects phenotype determination. Genetics in Medicine, 2020, 22, 232-233.	2.4	10
56	Molecular Mechanisms of <i>ARID5B-</i> Mediated Genetic Susceptibility to Acute Lymphoblastic Leukemia. Journal of the National Cancer Institute, 2022, 114, 1287-1295.	6.3	10
57	Concordance between glucose-6-phosphate dehydrogenase (G6PD) genotype and phenotype and rasburicase use in patients with hematologic malignancies. Pharmacogenomics Journal, 2019, 19, 305-314.	2.0	9
58	Genome-Wide Association Study of Susceptibility Loci for <i>TCF3-PBX1</i> Acute Lymphoblastic Leukemia in Children. Journal of the National Cancer Institute, 2021, 113, 933-937.	6.3	9
59	No evidence that G6PD deficiency affects the efficacy or safety of daunorubicin in acute lymphoblastic leukemia induction therapy. Pediatric Blood and Cancer, 2019, 66, e27681.	1.5	8
60	Amino acid stress response genes promote L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Blood Advances, 2022, 6, 3386-3397.	5.2	8
61	Class II Human Leukocyte Antigen Variants Associate With Risk of Pegaspargase Hypersensitivity. Clinical Pharmacology and Therapeutics, 2021, 110, 794-802.	4.7	7
62	Comprehensive characterization of pharmacogenetic variants in TPMT and NUDT15 in children with acute lymphoblastic leukemia. Pharmacogenetics and Genomics, 2022, 32, 60-66.	1.5	7
63	Genome-Wide Association Analyses Identify Susceptibility Loci For Vincristine-Induced Peripheral Neuropathy In Children With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 618-618.	1.4	6
64	Genetic Variation in NFATC2 Is Associated with a Higher Risk of Asparaginase Allergy. Blood, 2014, 124, 63-63.	1.4	6
65	<i>GATA3</i> rs3824662A allele in Bâ€cell acute lymphoblastic leukemia in adults, adolescents and young adults: association with <i>CRLF2</i> rearrangement and poor prognosis. American Journal of Hematology, 2021, 96, E71-E74.	4.1	5
66	Effects of <i>NT5C2</i> Germline Variants on 6â€Mecaptopurine Metabolism in Children With Acute Lymphoblastic Leukemia. Clinical Pharmacology and Therapeutics, 2021, 109, 1538-1545.	4.7	5
67	Comprehensive analysis of dose intensity of acute lymphoblastic leukemia chemotherapy. Haematologica, 2022, 107, 371-380.	3.5	5
68	A Genome-Wide Analysis of Variants Influencing Methotrexate Clearance Replicates SLCO1B1 Blood, 2012, 120, 2466-2466.	1.4	5
69	Klinefelter syndrome and 47, <scp>XYY</scp> syndrome in children with B cell acute lymphoblastic leukaemia. British Journal of Haematology, 2017, 179, 843-846.	2.5	4
70	Association between CEP72 genotype and persistent neuropathy in survivors of childhood acute lymphoblastic leukemia. Leukemia, 2022, 36, 1160-1163.	7.2	4
71	Dosing-related saturation of toxicity and accelerated drug clearance with pegaspargase treatment. Blood, 2020, 136, 2955-2958.	1.4	3
72	Genetics of osteonecrosis in pediatric acute lymphoblastic leukemia and general populations. Blood, 2021, 137, 1550-1552.	1.4	3

#	Article	IF	Citations
73	Reply to I.J. Cohen. Journal of Clinical Oncology, 2017, 35, 3989-3991.	1.6	2
74	Pegaspargase Allergic Reactions Are Related to Anti-Pegaspargase Antibodies and to Intensity of Intrathecal Therapy. Blood, 2018, 132, 2697-2697.	1.4	2
75	Genome-Wide Association Study Identifies PNPLA3 I148M Variant Associated with Elevated Transaminase Levels after Induction Therapy in Pediatric ALL Patients. Blood, 2015, 126, 3714-3714.	1.4	2
76	Genome-Wide Association Study Identifies a Novel Susceptibility Locus At 10p12.31-12.2 for Childhood Acute Lymphoblastic Leukemia in Ethinically Diverse Populations. Blood, 2012, 120, 877-877.	1.4	2
77	Germline Genetic Variation in ETV6 and Predisposition to Childhood Acute Lymphoblastic Leukemia. Blood, 2015, 126, 695-695.	1.4	2
78	Impact of T-cell immunity on chemotherapy response in childhood acute lymphoblastic leukemia. Blood, 2022, 140, 1507-1521.	1.4	2
79	Osteonecrosis is unrelated to hip anatomy in children with acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2017, 64, e26407.	1.5	1
80	Germline RUNX1 Variation and Predisposition to T-Cell Acute Lymphoblastic Leukemia in Children. Blood, 2019, 134, 653-653.	1.4	1
81	HLA-DRB1*07:01 Is Associated With Asparaginase Allergies In Children With Acute Lymphoblastic Leukemia. Blood, 2013, 122, 60-60.	1.4	1
82	Glutamate Receptor Polymorphisms Contribute to Glucocorticoid-Associated Osteonecrosis. Blood, 2014, 124, 367-367.	1.4	1
83	Association of the GATA3 rs3824662A allele with clinical outcomes in adult patients with adult B-ALL Journal of Clinical Oncology, 2019, 37, 7023-7023.	1.6	1
84	ARID5B Genetic Polymorphisms Contribute to Racial Disparities In Childhood Acute Lymphoblastic Leukemia: A Children's Oncology Group Study. Blood, 2010, 116, 8-8.	1.4	1
85	A Genome-Wide Association Study of Susceptibility to Acute Lymphoblastic Leukemia in Adolescents and Young Adults. Blood, 2014, 124, 132-132.	1.4	1
86	Abstract 2118: Non-coding germline GATA3 variants alter chromatin topology and contribute to pathogenesis of acute lymphoblastic leukemia. , 2021, , .		0
87	Genetic Variations in GRIA1 On Chromosome 5q33 Related to Asparaginase Hypersensitivity in Childhood Acute Lymphoblastic Leukemia (ALL) Blood, 2009, 114, 112-112.	1.4	O
88	SLCO1B1 Variation and Methotrexate Disposition in Children with Acute Lymphoblastic Leukemia: The Importance of Rare Variants in Pharmacogenetics. Blood, 2011, 118, 571-571.	1.4	0
89	Genome-Wide Association Study Identifies Germline Polymorphisms Associated with Relapse of Childhood Acute Lymphoblastic Leukemia. Blood, 2012, 120, 878-878.	1.4	0
90	Tolerability of 6-Mercaptopurine (6MP) in Patients with Thiopurine Methyltransferase (TPMT) Heterozygosity in the Context of Multi-Agent Therapy for Acute Lymphoblastic Leukemia (ALL). Blood, 2014, 124, 3722-3722.	1.4	0

#	Article	IF	CITATIONS
91	Genetic Risk Factors for the Development of Osteonecrosis in Children Under Age 10 Treated for Acute Lymphoblastic Leukemia. Blood, 2015, 126, 250-250.	1.4	O
92	The Effect of Asparaginase on Serum Triglycerides during Therapy for Acute Lymphoblastic Leukemia. Blood, 2018, 132, 2665-2665.	1.4	0
93	Identification of New Risk Loci and Regulatory Mechanisms Influencing Genetic Susceptibility to Acute Lymphoblastic Leukaemia. Blood, 2019, 134, 650-650.	1.4	O
94	The Impact of Genetic Ancestry on the Biology and Prognosis of Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3476-3476.	1.4	0
95	The Impact of T Cell Immunity on Chemotherapy Response in Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 703-703.	1.4	0