List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5891726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube. Journal of Alloys and Compounds, 2022, 893, 162206.	5.5	32
2	Systematic investigation of anode catalysts for liquid ammonia electrolysis. Journal of Catalysis, 2022, 406, 222-230.	6.2	5
3	Worrisome Exaggeration of Activity of Electrocatalysts Destined for Steady-State Water Electrolysis by Polarization Curves from Transient Techniques. Journal of the Electrochemical Society, 2022, 169, 014508.	2.9	35
4	<i>iR</i> drop correction in electrocatalysis: everything one needs to know!. Journal of Materials Chemistry A, 2022, 10, 9348-9354.	10.3	46
5	Layered 2D PtX ₂ (X = S, Se, Te) for the electrocatalytic HER in comparison with Mo/WX ₂ and Pt/C: are we missing the bigger picture?. Energy and Environmental Science, 2022, 15, 1461-1478.	30.8	37
6	Efficient Methanol Electrooxidation Catalyzed by Potentiostatically Grown Cu–O/OH(Ni) Nanowires: Role of Inherent Ni Impurity. ACS Applied Energy Materials, 2022, 5, 419-429.	5.1	10
7	Dos and don'ts in screening water splitting electrocatalysts. Energy Advances, 2022, 1, 511-523.	3.3	23
8	Layered 2D transition metal (W, Mo, and Pt) chalcogenides for hydrogen evolution reaction. , 2022, , 495-525.		2
9	(Invited) Production and Functionalization of Carbon Nanotubes for Electrochemical Energy Storage Devices. ECS Meeting Abstracts, 2022, MA2022-01, 768-768.	0.0	0
10	"The Fe Effect― A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80, 105514.	16.0	437
11	Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 408, 127275.	12.7	64
12	A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies. Advances in Colloid and Interface Science, 2021, 287, 102331.	14.7	53
13	Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoO. Applied Surface Science, 2021, 542, 148682.	6.1	11
14	Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources. Carbon, 2021, 172, 772-780.	10.3	36
15	Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH) ₂ Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer. ACS Applied Energy Materials, 2021, 4, 899-912.	5.1	26
16	Strategies and Perspectives to Catch the Missing Pieces in Energyâ€Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 18981-19006.	13.8	239
17	Strategies and Perspectives to Catch the Missing Pieces in Energyâ€Efficient Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 19129-19154.	2.0	13
18	Twoâ€Dimensional Polydopamine Positive Electrodes for Highâ€Capacity Alkali Metalâ€Ion Storage. ChemElectroChem, 2021, 8, 1070-1077.	3.4	3

#	Article	IF	CITATIONS
19	High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. Carbon, 2021, 175, 519-524.	10.3	7
20	Thermal properties of single-walled carbon nanotube forests with various volume fractions. International Journal of Heat and Mass Transfer, 2021, 171, 121076.	4.8	6
21	The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angewandte Chemie, 2021, 133, 23235.	2.0	1
22	Fluidized-bed production of 0.3Âmm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide. Carbon, 2021, 182, 23-31.	10.3	8
23	The Significance of Properly Reporting Turnover Frequency in Electrocatalysis Research. Angewandte Chemie - International Edition, 2021, 60, 23051-23067.	13.8	180
24	High-energy-density Li–S battery with positive electrode of lithium polysulfides held by carbon nanotube sponge. Carbon, 2021, 182, 32-41.	10.3	17
25	Controllable pore structures of pure and sub-millimeter-long carbon nanotubes. Applied Surface Science, 2021, 566, 150751.	6.1	9
26	Carbon nanotube/silicon heterojunction solar cell with an active area of 4Âcm2 realized using a multifunctional molybdenum oxide layer. Carbon, 2021, 185, 215-223.	10.3	7
27	Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlO catalyst annealed without CO2. Carbon, 2021, 185, 264-271.	10.3	7
28	Outstanding Lowâ€Temperature Performance of Structureâ€Controlled Graphene Anode Based on Surfaceâ€Controlled Charge Storage Mechanism. Advanced Functional Materials, 2021, 31, 2009397.	14.9	34
29	Why shouldn't double-layer capacitance (Cdl) be always trusted to justify Faradaic electrocatalytic activity differences?. Journal of Electroanalytical Chemistry, 2021, 903, 115842.	3.8	42
30	Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony. Small, 2020, 16, e1905779.	10.0	424
31	Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization. Electrochimica Acta, 2020, 364, 137170.	5.2	16
32	Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 12596-12606.	5.1	21
33	All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes. ACS Nano, 2020, 14, 5659-5667.	14.6	57
34	Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis. ChemElectroChem, 2020, 7, 2297-2308.	3.4	154
35	Ultrafast Growth of a Cu(OH) ₂ –CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 27327-27338.	8.0	95
36	Nanotubes make battery lighter and safer. Carbon, 2020, 167, 596-600.	10.3	7

#	Article	IF	CITATIONS
37	Facile catalyst deposition using mists for fluidized-bed production of sub-millimeter-long carbon nanotubes. Carbon, 2020, 167, 256-263.	10.3	12
38	Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode. Electrochimica Acta, 2020, 341, 136027.	5.2	25
39	Life Cycle Greenhouse Gas Emissions of Long and Pure Carbon Nanotubes Synthesized via On-Substrate and Fluidized-Bed Chemical Vapor Deposition. ACS Sustainable Chemistry and Engineering, 2020, 8, 1730-1740.	6.7	24
40	High-energy density Li Si-S full cell based on 3D current collector of few-wall carbon nanotube sponge. Carbon, 2020, 161, 612-621.	10.3	9
41	Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films. Carbon, 2020, 164, 150-156.	10.3	18
42	Achieving Increased Electrochemical Accessibility and Lowered Oxygen Evolution Reaction Activation Energy for Co ²⁺ Sites with a Simple Anion Preoxidation. Journal of Physical Chemistry C, 2020, 124, 9673-9684.	3.1	33
43	Enhanced Lithium Storage of an Organic Cathode via the Bipolar Mechanism. ACS Applied Energy Materials, 2020, 3, 3728-3735.	5.1	18
44	Nickel selenides as pre-catalysts for electrochemical oxygen evolution reaction: A review. International Journal of Hydrogen Energy, 2020, 45, 15763-15784.	7.1	116
45	Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 4174-4192.	10.3	189
46	Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. Scientific Reports, 2019, 9, 12051.	3.3	19
47	Stability of Chemically Doped Nanotube–Silicon Heterojunction Solar Cells: Role of Oxides at the Carbon–Silicon Interface. ACS Applied Energy Materials, 2019, 2, 5925-5932.	5.1	12
48	Effective Heat Transfer Pathways of Thermally Conductive Networks Formed by One-Dimensional Carbon Materials with Different Sizes. Polymers, 2019, 11, 1661.	4.5	11
49	Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes. ACS Nano, 2019, 13, 13208-13216.	14.6	15
50	Volumetric Discharge Capacity 1 A h cm ^{–3} Realized by Sulfur in Carbon Nanotube Sponge Cathodes. Journal of Physical Chemistry C, 2019, 123, 3951-3958.	3.1	13
51	1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019, 201, 319-324.	3.8	10
52	A Semitransparent Nitride Photoanode Responsive up to <i>λ</i> =600â€nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem, 2019, 3, 521-524.	3.0	13
53	Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates. Thin Solid Films, 2019, 675, 136-142.	1.8	5
54	Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition. CrystEngComm, 2018, 20, 1774-1778.	2.6	5

#	Article	IF	CITATIONS
55	Millimeter-tall carbon nanotube arrays grown on aluminum substrates. Carbon, 2018, 130, 834-842.	10.3	32
56	Improved capacity of redox-active functional carbon cathodes by dimension reduction for hybrid supercapacitors. Journal of Materials Chemistry A, 2018, 6, 3367-3375.	10.3	28
57	Carbon Nanotube Web with Carboxylated Polythiophene "Assist―for High-Performance Battery Electrodes. ACS Nano, 2018, 12, 3126-3139.	14.6	51
58	Self-supporting S@GO–FWCNTs composite films as positive electrodes for high-performance lithium–sulfur batteries. RSC Advances, 2018, 8, 2260-2266.	3.6	11
59	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
60	Resettable Heterogeneous Catalyst: (Re)Generation and (Re)Adsorption of Ni Nanoparticles for Repeated Synthesis of Carbon Nanotubes on Ni–Al–O Thin Films. ACS Applied Nano Materials, 2018, 1, 5483-5492.	5.0	3
61	CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis. Carbon, 2018, 136, 143-149.	10.3	32
62	Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes. Carbon, 2018, 138, 1-7.	10.3	23
63	An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors. Analyst, The, 2018, 143, 3635-3642.	3.5	12
64	Self-Supporting Hybrid Supercapacitor Electrodes Based on Carbon Nanotube and Activated Carbons. Eurasian Chemico-Technological Journal, 2018, 20, 169.	0.6	3
65	Highly air- and moisture-stable hole-doped carbon nanotube films achieved using boron-based oxidant. Applied Physics Express, 2017, 10, 035101.	2.4	13
66	Nano-Scale Smoothing of Double Layer Porous Si Substrates for Detaching and Fabricating Low Cost, High Efficiency Monocrystalline Thin Film Si Solar Cell by Zone Heating Recrystallization. ECS Transactions, 2017, 75, 11-23.	0.5	2
67	Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale. Carbon, 2017, 114, 31-38.	10.3	7
68	A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes. Journal of Power Sources, 2017, 363, 450-459.	7.8	21
69	Ten-Second Epitaxy of Cu on Repeatedly Used Sapphire for Practical Production of High-Quality Graphene. ACS Omega, 2017, 2, 3354-3362.	3.5	2
70	Self-polymerized dopamine as an organic cathode for Li- and Na-ion batteries. Energy and Environmental Science, 2017, 10, 205-215.	30.8	253
71	Lithium ion batteries made of electrodes with 99Âwt% active materials and 1Âwt% carbon nanotubes without binder or metal foils. Journal of Power Sources, 2016, 321, 155-162.	7.8	33
72	50–100 μm-thick pseudocapacitive electrodes of MnO ₂ nanoparticles uniformly electrodeposited in carbon nanotube papers. RSC Advances, 2016, 6, 41496-41505.	3.6	14

#	Article	IF	CITATIONS
73	Rapid vapour deposition and in situ melt crystallization for 1 min fabrication of 10 μm-thick crystalline silicon films with a lateral grain size of over 100 μm. CrystEngComm, 2016, 18, 3404-3410.	2.6	6
74	Carbon nanotube–silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Advances, 2016, 6, 93575-93581.	3.6	22
75	Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale, 2016, 8, 12330-12338.	5.6	31
76	Biomass-derived carbonaceous positive electrodes for sustainable lithium-ion storage. Nanoscale, 2016, 8, 3671-3677.	5.6	38
77	A Color-Tunable Polychromatic Organic-Light-Emitting-Diode Device With Low Resistive Intermediate Electrode for Roll-to-Roll Manufacturing. IEEE Transactions on Electron Devices, 2016, 63, 402-407.	3.0	12
78	Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives. RSC Advances, 2015, 5, 16101-16111.	3.6	12
79	Overcoming the quality–quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion–extraction process. Carbon, 2015, 91, 20-29.	10.3	25
80	One-minute deposition of micrometre-thick porous Si–Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries. Journal of Power Sources, 2015, 286, 540-550.	7.8	11
81	Electrochemical polymerization of pyrene derivatives on functionalized carbon nanotubes for pseudocapacitive electrodes. Nature Communications, 2015, 6, 7040.	12.8	159
82	Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials. Japanese Journal of Applied Physics, 2015, 54, 095102.	1.5	20
83	One-minute deposition of micrometre-thick porous Si anodes for lithium ion batteries. RSC Advances, 2015, 5, 2938-2946.	3.6	7
84	Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation―method. Carbon, 2015, 82, 254-263.	10.3	31
85	Simple and engineered process yielding carbon nanotube arrays with 1.2 × 1013cmâ^'2 wall density on conductive underlayer at 400 °C. Carbon, 2015, 81, 773-781.	10.3	27
86	Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes. RSC Advances, 2014, 4, 8230.	3.6	38
87	One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS Nano, 2014, 8, 3285-3293.	14.6	76
88	Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds. Carbon, 2014, 80, 339-350.	10.3	42
89	Methane-Assisted Chemical Vapor Deposition Yielding Millimeter-Tall Single-Wall Carbon Nanotubes of Smaller Diameter. ACS Nano, 2013, 7, 6719-6728.	14.6	26
90	The effect of atmospheric tarnishing on the optical and structural properties of silver nanoparticles. Journal Physics D: Applied Physics, 2013, 46, 145308.	2.8	39

#	Article	IF	CITATIONS
91	Self-standing positive electrodes of oxidized few-walled carbon nanotubes for light-weight and high-power lithium batteries. Energy and Environmental Science, 2012, 5, 5437-5444.	30.8	130
92	Composite of TiN Nanoparticles and Fewâ€Walled Carbon Nanotubes and Its Application to the Electrocatalytic Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2012, 7, 286-289.	3.3	32
93	Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays. Carbon, 2012, 50, 1538-1545.	10.3	38
94	One second growth of carbon nanotube arrays on a glass substrate by pulsed-current heating. Carbon, 2012, 50, 2110-2118.	10.3	7
95	Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol. Carbon, 2012, 50, 2953-2960.	10.3	31
96	Zeolite Surface As a Catalyst Support Material for Synthesis of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 24231-24237.	3.1	19
97	Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water. ACS Nano, 2011, 5, 975-984.	14.6	118
98	Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor. Carbon, 2011, 49, 1972-1979.	10.3	67
99	A simple and fast method to disperse long single-walled carbon nanotubes introducing few defects. Carbon, 2011, 49, 3179-3183.	10.3	19
100	Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon, 2011, 49, 4497-4504.	10.3	64
101	Tailoring the Morphology of Carbon Nanotube Assemblies Using Microgradients in the Catalyst Thickness. Japanese Journal of Applied Physics, 2011, 50, 095101.	1.5	0
102	Nanostructure and magnetic properties of c-axis oriented L10-FePt nanoparticles and nanocrystalline films on polycrystalline TiN underlayers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	8
103	Tailoring the Morphology of Carbon Nanotube Assemblies Using Microgradients in the Catalyst Thickness. Japanese Journal of Applied Physics, 2011, 50, 095101.	1.5	0
104	Two routes to polycrystalline CoSi2 thin films by co-sputtering Co and Si. Applied Surface Science, 2010, 256, 7118-7124.	6.1	2
105	Millimeter-tall single-walled carbon nanotube forests grown from ethanol. Carbon, 2010, 48, 2203-2211.	10.3	53
106	A Simple Combinatorial Method Aiding Research on Single-Walled Carbon Nanotube Growth on Substrates. Japanese Journal of Applied Physics, 2010, 49, 02BA02.	1.5	23
107	Real-Time Monitoring of Millimeter-Tall Vertically Aligned Single-Walled Carbon Nanotube Growth on Combinatorial Catalyst Library. Japanese Journal of Applied Physics, 2010, 49, 085104.	1.5	29
108	Combinatorial Evaluation for Field Emission Properties of Carbon Nanotubes Part II: High Growth Rate System. Journal of Physical Chemistry C, 2010, 114, 12938-12947.	3.1	5

#	Article	IF	CITATIONS
109	Diameter Increase in Millimeter-Tall Vertically Aligned Single-Walled Carbon Nanotubes during Growth. Applied Physics Express, 2010, 3, 045103.	2.4	35
110	Thickness-gradient dependent Raman enhancement in silver island films. Applied Physics Letters, 2009, 94, 053106.	3.3	17
111	Efficient field emission from triode-type 1D arrays of carbon nanotubes. Nanotechnology, 2009, 20, 475707.	2.6	7
112	Multiple "optimum―conditions for Co–Mo catalyzed growth of vertically aligned single-walled carbon nanotube forests. Carbon, 2009, 47, 234-241.	10.3	96
113	Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films. Journal of Physical Chemistry C, 2009, 113, 4820-4828.	3.1	42
114	Two-Dimensional Combinatorial Investigation of Raman and Fluorescence Enhancement in Silver and Gold Sandwich Substrates. Journal of Physical Chemistry C, 2009, 113, 9588-9594.	3.1	5
115	12.3: 1â€5econd Implementation of CNTâ€Emitter Arrays on Glasses for BLUs. Digest of Technical Papers SID International Symposium, 2009, 40, 139-141.	0.3	1
116	Individuals, grasses, and forests of single- and multi-walled carbon nanotubes grown by supported Co catalysts of different nominal thicknesses. Applied Surface Science, 2008, 254, 6710-6714.	6.1	24
117	Growth Valley Dividing Single- and Multi-Walled Carbon Nanotubes: Combinatorial Study of Nominal Thickness of Co Catalyst. Japanese Journal of Applied Physics, 2008, 47, 1961-1965.	1.5	28
118	Growth mechanism of epitaxial CoSi2 on Si and reactive deposition epitaxy of double heteroepitaxial Si/CoSi2/Si. Thin Solid Films, 2008, 516, 3989-3995.	1.8	9
119	Combinatorial Evaluation for Field Emission Properties of Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 17974-17982.	3.1	11
120	CHEMICAL ENGINEERING FOR TECHNOLOGY INNOVATION. Chemical Engineering Communications, 2008, 196, 267-276.	2.6	2
121	Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter Morphologies. Japanese Journal of Applied Physics, 2008, 47, 4780-4787.	1.5	18
122	Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Applied Physics Letters, 2008, 93, .	3.3	61
123	Growth Window and Possible Mechanism of Millimeter-Thick Single-Walled Carbon Nanotube Forests. Journal of Nanoscience and Nanotechnology, 2008, 8, 6123-6128.	0.9	40
124	Structure and magnetic property of c-axis oriented L1[sub 0]-FePt nanoparticles on TiN/a-Si underlayers. Journal of Vacuum Science & Technology B, 2007, 25, 1892.	1.3	6
125	Spontaneous formation of Si nanocones vertically aligned to Si wafers. Journal of Vacuum Science & Technology B, 2007, 25, 808.	1.3	2
126	Millimeter-Thick Single-Walled Carbon Nanotube Forests: Hidden Role of Catalyst Support. Japanese Journal of Applied Physics, 2007, 46, L399-L401.	1.5	194

#	Article	IF	CITATIONS
127	Spectroscopic Study of Laser-Induced Phase Transition of Gold Nanoparticles on Nanosecond Time Scales and Longer. Journal of Physical Chemistry B, 2006, 110, 3114-3119.	2.6	68
128	Novel Analytical Method of Nanoparticle Dispersibility in Polymer Nanocomposites; TEM-CT and 3D Topological Analysis. Journal of the Ceramic Society of Japan, 2006, 114, 638-642.	1.3	0
129	A simple combinatorial method to discover Co–Mo binary catalysts that grow vertically aligned single-walled carbon nanotubes. Carbon, 2006, 44, 1414-1419.	10.3	86
130	Supported Ni catalysts from nominal monolayer grow single-walled carbon nanotubes. Chemical Physics Letters, 2006, 428, 381-385.	2.6	21
131	Filling the gap between researchers studying different materials and different methods: a proposal for structured keywords. Journal of Information Science, 2006, 32, 511-524.	3.3	28
132	Nanostructural Evolution in Non-epitaxial Growth of Thin Films. Materials Research Society Symposia Proceedings, 2006, 961, 1.	0.1	0
133	Growth mode during initial stage of chemical vapor deposition. Applied Surface Science, 2005, 245, 281-289.	6.1	46
134	c-Axis Oriented Face-Centered-Tetragonal-FePt Nanoparticle Monolayer Formed on a Polycrystalline TiN Seed Layer. Japanese Journal of Applied Physics, 2005, 44, 7957-7961.	1.5	4
135	Combinatorial method to prepare metal nanoparticles that catalyze the growth of single-walled carbon nanotubes. Applied Physics Letters, 2005, 86, 173106.	3.3	49
136	Stranski–Krastanov Growth of Tungsten during Chemical Vapor Deposition Revealed by Micro-Auger Electron Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 6974-6977.	1.5	6
137	Nucleation of W during Chemical Vapor Deposition from WF6and SiH4. Japanese Journal of Applied Physics, 2004, 43, 3945-3950.	1.5	18
138	Selective Silicidation of Co Using Silane or Disilane for Anti-Oxidation Barrier Layer in Cu Metallization. Japanese Journal of Applied Physics, 2004, 43, 6001-6007.	1.5	3
139	Reaction of Si with HCl to Form Chlorosilanes. Journal of the Electrochemical Society, 2004, 151, C399.	2.9	14
140	Structuring knowledge on nanomaterials processing. Chemical Engineering Science, 2004, 59, 5085-5090.	3.8	8
141	Wettability and crystalline orientation of Cu nanoislands on SiO2 with a Cr underlayer. Applied Physics A: Materials Science and Processing, 2004, 79, 625-628.	2.3	9
142	Incubation Time during Chemical Vapor Deposition of Si onto SiO2 from Silane. Chemical Vapor Deposition, 2004, 10, 128-133.	1.3	21
143	A Simple Index to Restrain Abnormal Protrusions in Films Fabricated Using CVD under Diffusion-Limited Conditions. Chemical Vapor Deposition, 2004, 10, 221-228.	1.3	9
144	Use of process indices for simplification of the description of vapor deposition systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 111, 156-163.	3.5	7

#	Article	lF	CITATIONS
145	Combinatorial masked deposition: simple method to control deposition flux and its spatial distribution. Applied Surface Science, 2004, 225, 372-379.	6.1	21
146	Preferred orientation and film structure of TaN films deposited by reactive magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 332-338.	2.1	16
147	Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1943-1954.	2.1	101
148	Structural and morphological control of nanosized Cu islands on SiO2 using a Ti underlayer. Journal of Applied Physics, 2003, 94, 3492-3497.	2.5	20
149	Mechanisms Controlling Preferred Orientation of Chemical Vapour Deposited Polycrystalline Films. Solid State Phenomena, 2003, 93, 411-418.	0.3	7
150	Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1717-1723.	2.1	36
151	Amorphous-to-crystalline transition during the early stages of thin film growth of Cr on SiO2. Journal of Applied Physics, 2003, 93, 9336-9344.	2.5	24
152	Effects of substrate heating and biasing on nanostructural evolution of nonepitaxially grown TiN nanofilms. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2512.	1.6	16
153	Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 583-588.	2.1	80
154	Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 589-596.	2.1	43
155	Growth of Trumpet-Like Protrusions During the CVD of Silicon Carbide Films. Chemical Vapor Deposition, 2002, 8, 52-55.	1.3	5
156	Cone Structure Formation by Preferred Growth of Random Nuclei in Chemical Vapor Deposited Epitaxial Silicon Films. Chemical Vapor Deposition, 2002, 8, 87-89.	1.3	5
157	Preferred Orientation of Chemical Vapor Deposited Polycrystalline Silicon Carbide Films. Chemical Vapor Deposition, 2002, 8, 99-104.	1.3	46
158	A new insight into the growth mode of metals on TiO2(110). Surface Science, 2002, 513, 530-538.	1.9	57
159	Influence of Deposition Temperature on the Microstructure of Pb-Ti-Nb-O Thin Films by Metallorganic Chemical Vapor Deposition. Journal of the Electrochemical Society, 2001, 148, C227.	2.9	43
160	NO Reduction under the Excess O2 Condition by Porous VYCOR Catalyst Journal of Chemical Engineering of Japan, 2001, 34, 834-839.	0.6	1
161	Structure and morphology of self-assembled 3-mercaptopropyltrimethoxysilane layers on silicon oxide. Applied Surface Science, 2001, 181, 307-316.	6.1	158
162	Internal Microstructure and Formation Mechanism of Surface Protrusions in Pb-Ti-Nb-O Thin Films Prepared by MOCVD. Chemical Vapor Deposition, 2001, 7, 253-259.	1.3	6

#	Article	IF	CITATIONS
163	Gas-Phase Hydroxyl Radical Emission in the Thermal Decomposition of Lithium Hydroxide. Journal of Physical Chemistry B, 1999, 103, 1954-1959.	2.6	8
164	Gas-Phase Hydroxyl Radical Generation by the Surface Reactions over Basic Metal Oxides. Journal of Physical Chemistry B, 1998, 102, 3185-3191.	2.6	12
165	The Pitfalls of Using Potentiodynamic Polarization Curves for Tafel Analysis in Electrocatalytic Water Splitting. ACS Energy Letters, 0, , 1607-1611.	17.4	256