Pattarachai Srimuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5890981/publications.pdf

Version: 2024-02-01

32 2,476 26 32 papers citations h-index g-index

32 32 32 2066
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 2020, 5, 517-538.	48.7	360
2	MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. Journal of Materials Chemistry A, 2016, 4, 18265-18271.	10.3	358
3	Two-Dimensional Molybdenum Carbide (MXene) with Divacancy Ordering for Brackish and Seawater Desalination via Cation and Anion Intercalation. ACS Sustainable Chemistry and Engineering, 2018, 6, 3739-3747.	6.7	183
4	Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide. Journal of Materials Chemistry A, 2017, 5, 15640-15649.	10.3	167
5	Influence of pore structure and cell voltage of activated carbon cloth as a versatile electrode material for capacitive deionization. Carbon, 2017, 122, 329-335.	10.3	149
6	Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination. Chemistry of Materials, 2017, 29, 9964-9973.	6.7	112
7	Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Progress in Materials Science, 2019, 101, 46-89.	32.8	111
8	MXene/Activated-Carbon Hybrid Capacitive Deionization for Permselective Ion Removal at Low and High Salinity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26013-26025.	8.0	91
9	Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadiumâ€Pentoxideâ€Decorated Multiwalled Carbon Nanotubes. ChemSusChem, 2017, 10, 3611-3623.	6.8	89
10	Nanoconfinement of redox reactions enables rapid zinc iodide energy storage with high efficiency. Journal of Materials Chemistry A, 2017, 5, 12520-12527.	10.3	80
11	Concentrationâ€Gradient Multichannel Flowâ€Stream Membrane Capacitive Deionization Cell for High Desalination Capacity of Carbon Electrodes. ChemSusChem, 2017, 10, 4914-4920.	6.8	69
12	Charge and Potential Balancing for Optimized Capacitive Deionization Using Ligninâ€Derived, Lowâ€Cost Activated Carbon Electrodes. ChemSusChem, 2018, 11, 2101-2113.	6.8	68
13	Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Advances, 2019, 9, 14849-14858.	3.6	64
14	Polymer ion-exchange membranes for capacitive deionization of aqueous media with low and high salt concentration. Desalination, 2020, 479, 114331.	8.2	54
15	Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes. Desalination, 2018, 425, 104-110.	8.2	51
16	Hydrogen-treated, sub-micrometer carbon beads for fast capacitive deionization with high performance stability. Carbon, 2017, 117, 46-54.	10.3	50
17	Confined Redox Reactions of Iodide in Carbon Nanopores for Fast and Energyâ€Efficient Desalination of Brackish Water and Seawater. ChemSusChem, 2018, 11, 3460-3472.	6.8	46
18	Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination. Journal of Materials Chemistry A, 2019, 7, 4175-4184.	10.3	46

#	Article	IF	CITATIONS
19	Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte. Desalination, 2018, 443, 56-61.	8.2	39
20	Carbon onion/sulfur hybrid cathodes <i>via</i> inverse vulcanization for lithium–sulfur batteries. Sustainable Energy and Fuels, 2018, 2, 133-146.	4.9	36
21	Self-Sustained Visible-Light-Driven Electrochemical Redox Desalination. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32788-32796.	8.0	35
22	Potentialâ€Dependent, Switchable Ion Selectivity in Aqueous Media Using Titanium Disulfide. ChemSusChem, 2018, 11, 2091-2100.	6.8	33
23	High Electrochemical Seawater Desalination Performance Enabled by an Iodide Redox Electrolyte Paired with a Sodium Superionic Conductor. ACS Sustainable Chemistry and Engineering, 2019, 7, 10132-10142.	6.7	32
24	Electrodeposition of hydrated vanadium pentoxide on nanoporous carbon cloth for hybrid energy storage. Sustainable Energy and Fuels, 2018, 2, 577-588.	4.9	30
25	High-performance ion removal via zinc–air desalination. Electrochemistry Communications, 2020, 115, 106713.	4.7	30
26	Dualâ€Zinc Electrode Electrochemical Desalination. ChemSusChem, 2020, 13, 2792-2798.	6.8	26
27	In Situ Tracking of Partial Sodium Desolvation of Materials with Capacitive, Pseudocapacitive, and Battery-like Charge/Discharge Behavior in Aqueous Electrolytes. Langmuir, 2018, 34, 13132-13143.	3.5	20
28	Titanium Niobium Oxide Ti ₂ Nb ₁₀ O ₂₉ /Carbon Hybrid Electrodes Derived by Mechanochemically Synthesized Carbide for Highâ€Performance Lithiumâ€ion Batteries. ChemSusChem, 2021, 14, 398-407.	6.8	15
29	Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation. Journal of Materials Chemistry A, 2021, 9, 585-596.	10.3	11
30	Vanadium (III) Oxide/Carbon Core/Shell Hybrids as an Anode for Lithiumâ€lon Batteries. Batteries and Supercaps, 2019, 2, 74-82.	4.7	10
31	Effect of Pore Size on the Ion Electrosorption and Hydrogen/Deuterium Electrosorption Using Sodium Chloride in H ₂ O and D ₂ O. Journal of the Electrochemical Society, 2019, 166, A4158-A4167.	2.9	8
32	Hybrid Anodes of Lithium Titanium Oxide and Carbon Onions for Lithium″on and Sodium″on Energy Storage. Energy Technology, 2020, 8, 2000679.	3.8	3