Jeong-beom Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/589069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature, 2008, 454, 646-650.	27.8	890
2	Oct4-Induced Pluripotency in Adult Neural Stem Cells. Cell, 2009, 136, 411-419.	28.9	858
3	Direct reprogramming of human neural stem cells by OCT4. Nature, 2009, 461, 649-653.	27.8	652
4	Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 2012, 33, 6952-6964.	11.4	311
5	Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Proteome Quantitation of Mouse Embryonic Stem Cells to a Depth of 5,111 Proteins. Molecular and Cellular Proteomics, 2008, 7, 672-683.	3.8	261
6	Induction of Pluripotency in Adult Unipotent Germline Stem Cells. Cell Stem Cell, 2009, 5, 87-96.	11.1	246
7	Conversion of Mouse Epiblast Stem Cells to an Earlier Pluripotency State by Small Molecules. Journal of Biological Chemistry, 2010, 285, 29676-29680.	3.4	107
8	Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication, 2020, 12, 025003.	7.1	94
9	Generation of induced pluripotent stem cells from neural stem cells. Nature Protocols, 2009, 4, 1464-1470.	12.0	79
10	Effects of Neural Progenitor Cells on Sensorimotor Recovery and Endogenous Repair Mechanisms After Photothrombotic Stroke. Stroke, 2011, 42, 1757-1763.	2.0	70
11	Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica, 2015, 100, 32-41.	3.5	67
12	Differentiation Efficiency of Induced Pluripotent Stem Cells Depends on the Number of Reprogramming Factors. Stem Cells, 2012, 30, 570-579.	3.2	60
13	Induction of pluripotency in human cord blood unrestricted somatic stem cells. Experimental Hematology, 2010, 38, 809-818.e2.	0.4	55
14	Oct4â€induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model. EMBO Journal, 2015, 34, 2971-2983.	7.8	49
15	Origin-Dependent Neural Cell Identities in Differentiated Human iPSCs InÂVitro and after Transplantation into the Mouse Brain. Cell Reports, 2014, 8, 1697-1703.	6.4	41
16	Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma. PLoS ONE, 2017, 12, e0178881.	2.5	22
17	Sequentially induced motor neurons from human fibroblasts facilitate locomotor recovery in a rodent spinal cord injury model. ELife, 2020, 9, .	6.0	21
18	Induced Pluripotent Stem Cells. Methods in Enzymology, 2010, 476, 309-325.	1.0	16

JEONG-BEOM KIM

#	ARTICLE	IF	CITATIONS
19	Establishment of feeder-free culture system for human induced pluripotent stem cell on DAS nanocrystalline graphene. Scientific Reports, 2016, 6, 20708.	3.3	11
20	Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status. Stem Cell Research, 2016, 16, 460-468.	0.7	11
21	Synergistic control of mechanics and microarchitecture of 3D bioactive hydrogel platform to promote the regenerative potential of engineered hepatic tissue. Biomaterials, 2021, 270, 120688.	11.4	11
22	Oct4 and Hnf4α-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS ONE, 2019, 14, e0221085.	2.5	10
23	Flexibility Enhancement of Poly(lactide-co-glycolide) for Fused Deposition Modeling Technology. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 465-475.	4.9	10
24	SPON1 Can Reduce Amyloid Beta and Reverse Cognitive Impairment and Memory Dysfunction in Alzheimer's Disease Mouse Model. Cells, 2020, 9, 1275.	4.1	8
25	Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors. Stem Cells International, 2016, 2016, 1-6.	2.5	5
26	<i>Etv2</i> - and <i>Fli1</i> -Induced Vascular Progenitor Cells Enhance Functional Recovery in Ischemic Vascular Disease Model—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e105-e113.	2.4	4
27	Controllable Synthesis of Grapheneâ€Encapsulated Lowâ€Dimensional Nanocomposites. Advanced Materials Interfaces, 2015, 2, 1500112.	3.7	3
28	Direct monitoring of live human pluripotent stem cells by a highly selective pluripotency sensor. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127347.	2.2	1
29	Induction of Pluripotency in Somatic and Germline Cells. , 0, 2008, .		Ο
30	Direct Reprogramming of Human Neural Stem Cells by the Single Transcription Factor OCT4. Pancreatic Islet Biology, 2011, , 439-447.	0.3	0
31	Review: Direct conversion in Neuro-regenerative Medicine. , 2014, , .		0
32	Design of Low Power TCAM Based on 15-T Cell. The Journal of Korean Institute of Information Technology, 2018, 16, 37-42.	0.3	0