
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5890101/publications.pdf Version: 2024-02-01

ΔΝΑ ΡΡΕΤΟ

#	Article	IF	CITATIONS
1	KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications. Cells, 2022, 11, 398.	4.1	23
2	Ruthenium(II)–Cyclopentadienyl-Derived Complexes as New Emerging Anti-Colorectal Cancer Drugs. Pharmaceutics, 2022, 14, 1293.	4.5	9
3	Biotinylated Polymer-Ruthenium Conjugates: In Vitro and In Vivo Studies in a Triple-Negative Breast Cancer Model. Pharmaceutics, 2022, 14, 1388.	4.5	9
4	Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells, 2022, 11, 2183.	4.1	18
5	N-(5-Amino-9H-benzo[a]phenoxazin-9-ylidene)propan-1-aminium chlorides as antifungal agents and NIR fluorescent probes. New Journal of Chemistry, 2021, 45, 7808-7815.	2.8	4
6	Novel Nile Blue Analogue Stains Yeast Vacuolar Membrane, Endoplasmic Reticulum, and Lipid Droplets, Inducing Cell Death through Vacuole Membrane Permeabilization. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /4	Overbosek 1() Tf 537 To
7	Benzo[a]phenoxazinium chlorides: Synthesis, antifungal activity, in silico studies and evaluation as fluorescent probes. Bioorganic Chemistry, 2020, 98, 103730.	4.1	8
8	A New Family of Iron(II)-Cyclopentadienyl Compounds Shows Strong Activity against Colorectal and Triple Negative Breast Cancer Cells. Molecules, 2020, 25, 1592.	3.8	20
9	The Role of Diet Related Short-Chain Fatty Acids in Colorectal Cancer Metabolism and Survival: Prevention and Therapeutic Implications. Current Medicinal Chemistry, 2020, 27, 4087-4108.	2.4	72
10	MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biological Chemistry, 2019, 400, 787-799.	2.5	11
11	Ruthenium–Cyclopentadienyl Bipyridine–Biotin Based Compounds: Synthesis and Biological Effect. Inorganic Chemistry, 2019, 58, 9135-9149.	4.0	31
12	Polymer "ruthenium-cyclopentadienyl―conjugates - New emerging anti-cancer drugs. European Journal of Medicinal Chemistry, 2019, 168, 373-384.	5.5	26
13	Fab antibody fragment-functionalized liposomes for specific targeting of antigen-positive cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 123-130.	3.3	39
14	Novel ruthenium methylcyclopentadienyl complex bearing a bipyridine perfluorinated ligand shows strong activity towards colorectal cancer cells. European Journal of Medicinal Chemistry, 2018, 143, 503-514.	5.5	22
15	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
16	Colorectal Cancer Cells Increase the Production of Short Chain Fatty Acids by Propionibacterium freudenreichii Impacting on Cancer Cells Survival. Frontiers in Nutrition, 2018, 5, 44.	3.7	43
17	The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells, 2018, 7, 14.	4.1	33
18	Unraveling the mode of action of new promising polymer–ruthenium conjugates. Ultrastructural Pathology, 2017, 41, 129-130.	0.9	0

#	Article	IF	CITATIONS
19	Neutral PEGylated liposomal formulation for efficient folate-mediated delivery of MCL1 siRNA to activated macrophages. Colloids and Surfaces B: Biointerfaces, 2017, 155, 459-465.	5.0	25
20	Significance of glycolytic metabolism-related protein expression in colorectal cancer, lymph node and hepatic metastasis. BMC Cancer, 2016, 16, 535.	2.6	47
21	The anticancer agent 3-bromopyruvate: a simple but powerful molecule taken from the lab to the bedside. Journal of Bioenergetics and Biomembranes, 2016, 48, 349-362.	2.3	55
22	Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1113-1126.	3.3	112
23	Assessment of liposome disruption to quantify drug delivery in vitro. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 163-167.	2.6	9
24	Characterization of acetate transport in colorectal cancer cells and potential therapeutic implications. Oncotarget, 2016, 7, 70639-70653.	1.8	37
25	Update on Therapeutic Approaches for Rheumatoid Arthritis. Current Medicinal Chemistry, 2016, 23, 2190-2203.	2.4	19
26	Monocarboxylate transport inhibition potentiates the cytotoxic effect of 5-fluorouracil in colorectal cancer cells. Cancer Letters, 2015, 365, 68-78.	7.2	65
27	Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1077-1083.	3.3	33
28	Peptide Anchor for Folate-Targeted Liposomal Delivery. Biomacromolecules, 2015, 16, 2904-2910.	5.4	34
29	Size controlled protein nanoemulsions for active targeting of folate receptor positive cells. Colloids and Surfaces B: Biointerfaces, 2015, 135, 90-98.	5.0	26
30	Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria. Cell Death and Disease, 2015, 6, e1788-e1788.	6.3	54
31	The cytotoxicity of 3-bromopyruvate in breast cancer cells depends on extracellular pH. Biochemical Journal, 2015, 467, 247-258.	3.7	30
32	Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice. Journal of Biomedical Nanotechnology, 2015, 11, 2243-2252.	1.1	56
33	Design of liposomal formulations for cell targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 514-526.	5.0	126
34	RAF-1 promotes survival of thyroid cancer cells harboring RET/PTC1 rearrangement independently of ERK activation. Molecular and Cellular Endocrinology, 2015, 415, 64-75.	3.2	5
35	Yeast as a tool to explore cathepsin D function. Microbial Cell, 2015, 2, 225-234.	3.2	8
36	Colorectal cancer-related mutant <i>KRAS</i> alleles function as positive regulators of autophagy. Oncotarget, 2015, 6, 30787-30802.	1.8	39

#	Article	IF	CITATIONS
37	Monocarboxylate transporters as targets and mediators in cancer therapy response. Histology and Histopathology, 2014, 29, 1511-24.	0.7	87
38	Frequency of TERT promoter mutations in human cancers. Nature Communications, 2013, 4, 2185.	12.8	740
39	Liposome and protein based stealth nanoparticles. Faraday Discussions, 2013, 166, 417.	3.2	26
40	<i>In vitro</i> induction of melanin synthesis and extrusion by tamoxifen. International Journal of Cosmetic Science, 2013, 35, 368-374.	2.6	6
41	Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death and Disease, 2013, 4, e507-e507.	6.3	91
42	Ammonium-Dependent Shortening of CLS in Yeast Cells Starved for Essential Amino Acids Is Determined by the Specific Amino Acid Deprived, through Different Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-10.	4.0	14
43	Ammonium Is Toxic for Aging Yeast Cells, Inducing Death and Shortening of the Chronological Lifespan. PLoS ONE, 2012, 7, e37090.	2.5	42
44	Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. Journal of Bioenergetics and Biomembranes, 2012, 44, 141-153.	2.3	60
45	Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39, 1533-1537.	3.4	16
46	Vacuole–mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome–mitochondria-mediated apoptosis in mammals. Biochemical Society Transactions, 2011, 39, 1901-1901.	3.4	0
47	Genetic Alterations in Poorly Differentiated and Undifferentiated Thyroid Carcinomas. Current Genomics, 2011, 12, 609-617.	1.6	71
48	Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Molecular Microbiology, 2010, 76, 1398-1410.	2.5	75
49	Proliferation and survival molecules implicated in the inhibition of BRAF pathway in thyroid cancer cells harbouring different genetic mutations. BMC Cancer, 2009, 9, 387.	2.6	24
50	Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Letters, 2009, 281, 162-170.	7.2	153
51	BRAF ^{V600E} mutation in papillary thyroid carcinoma: a potential target for therapy?. Expert Review of Endocrinology and Metabolism, 2009, 4, 467-480.	2.4	0
52	BRAF provides proliferation and survival signals in MSI colorectal carcinoma cells displaying <i>BRAF</i> ^{<i>V</i>600<i>E</i>} but not <i>KRAS</i> mutations. Journal of Pathology, 2008, 214, 320-327.	4.5	53
53	Intragenic Mutations in Thyroid Cancer. Endocrinology and Metabolism Clinics of North America, 2008, 37, 333-362.	3.2	87
54	Molecular and Genotypic Characterization of Human Thyroid Follicular Cell Carcinoma–Derived Cell Lines. Thyroid, 2007, 17, 707-715.	4.5	81

#	Article	IF	CITATIONS
55	Molecular genetics of papillary thyroid carcinoma: great expectations Arquivos Brasileiros De Endocrinologia E Metabologia, 2007, 51, 643-653.	1.3	28
56	KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene, 2007, 26, 158-163.	5.9	164
57	ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome <i>c</i> release in yeast apoptosis. Molecular Microbiology, 2007, 66, 571-582.	2.5	128
58	A subset of colorectal carcinomas express c-KIT protein independently of BRAF and/or KRAS activation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450, 619-626.	2.8	14
59	Concomitant RASSF1A hypermethylation and KRAS/BRAF mutations occur preferentially in MSI sporadic colorectal cancer. Oncogene, 2005, 24, 7630-7634.	5.9	45
60	Molecular pathology of well-differentiated thyroid carcinomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 787-793.	2.8	67
61	Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 446, 589-595.	2.8	242
62	Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. British Journal of Cancer, 2005, 92, 1892-1898.	6.4	191
63	A stem cell role for thyroid solid cell nests. Human Pathology, 2005, 36, 590-591.	2.0	26
64	Telomere erosion triggers growth arrest but not cell death in human cancer cells retaining wild-type p53: implications for antitelomerase therapy. Oncogene, 2004, 23, 4136-4145.	5.9	18
65	Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Modern Pathology, 2004, 17, 819-826.	5.5	57
66	Core I gene is overexpressed in Hürthle and non-Hürthle cell microfollicular adenomas and follicular carcinomas of the thyroid. BMC Cancer, 2004, 4, 12.	2.6	4
67	Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2003, 443, 122-132.	2.8	220
68	BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene, 2003, 22, 4578-4580.	5.9	616
69	p63 Expression in Solid Cell Nests of the Thyroid: Further Evidence for a Stem Cell Origin. Modern Pathology, 2003, 16, 43-48.	5.5	106
70	P63 Expression in Papillary and Anaplastic Carcinomas of the Thyroid Gland: Lack of an Oncogenetic Role in Tumorigenesis and Progression. Pathology Research and Practice, 2002, 198, 449-454.	2.3	29
71	Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology (United Kingdom), 2001, 147, 2409-2415.	1.8	467
72	Cell Cycle Analysis of Yeasts. Current Protocols in Cytometry, 2000, 13, Unit 11.13.	3.7	23

#	Article	IF	CITATIONS
73	Cloning of a Leishmania major gene encoding for an antigen with extensive homology to ribosomal protein S3a. Gene, 1999, 240, 57-65.	2.2	11