Baohua Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5888730/publications.pdf Version: 2024-02-01

Влонил Си

#	Article	IF	CITATIONS
1	Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 1994, 28, 38-46.	10.0	1,269
2	Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica Et Cosmochimica Acta, 1995, 59, 219-229.	3.9	608
3	Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere, 2002, 48, 59-68.	8.2	585
4	GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal, 2007, 1, 67-77.	9.8	554
5	Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy. Nano Letters, 2010, 10, 4952-4955.	9.1	480
6	Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity. Physical Review Letters, 2009, 103, 226401.	7.8	347
7	Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere, 2003, 50, 639-647.	8.2	344
8	Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability. Applied and Environmental Microbiology, 2010, 76, 7981-7989.	3.1	323
9	Reductive Precipitation of Uranium(VI) by Zero-Valent Iron. Environmental Science & Technology, 1998, 32, 3366-3373.	10.0	311
10	Silver Nanocrystallites: Biofabrication using <i>Shewanella oneidensis,</i> and an Evaluation of Their Comparative Toxicity on Gram-negative and Gram-positive Bacteria. Environmental Science & Technology, 2010, 44, 5210-5215.	10.0	299
11	Mercury reduction and complexation by natural organic matter in anoxic environments. Proceedings of the United States of America, 2011, 108, 1479-1483.	7.1	277
12	Biogeochemical Dynamics in Zero-Valent Iron Columns:Â Implications for Permeable Reactive Barriers. Environmental Science & Technology, 1999, 33, 2170-2177.	10.0	250
13	Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomaterialia, 2011, 7, 2148-2152.	8.3	247
14	Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proceedings of the United States of America, 2011, 108, 8714-8719.	7.1	245
15	Pilot-Scale in Situ Bioremedation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI) and Geochemical Control of U(VI) Bioavailability. Environmental Science & Technology, 2006, 40, 3986-3995.	10.0	242
16	Detection of Alkaline Phosphatase Using Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2006, 78, 3379-3384.	6.5	241
17	Performance Evaluation of a Zerovalent Iron Reactive Barrier:Â Mineralogical Characteristics. Environmental Science & Technology, 2000, 34, 4169-4176.	10.0	233
18	Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir, 2012, 28, 2727-2735.	3.5	222

#	Article	IF	CITATIONS
19	The roles of natural organic matter in chemical and microbial reduction of ferric iron. Science of the Total Environment, 2003, 307, 167-178.	8.0	188
20	Extraction of Oxidized and Reduced Forms of Uranium from Contaminated Soils:À Effects of Carbonate Concentration and pH. Environmental Science & Technology, 2005, 39, 4435-4440.	10.0	185
21	Fabrication of Two- and Three-Dimensional Silica Nanocolloidal Particle Arrays. Journal of Physical Chemistry B, 2003, 107, 3400-3404.	2.6	183
22	In Situ Bioreduction of Uranium (VI) to Submicromolar Levels and Reoxidation by Dissolved Oxygen. Environmental Science & Technology, 2007, 41, 5716-5723.	10.0	182
23	Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions. Geochimica Et Cosmochimica Acta, 2003, 67, 3575-3582.	3.9	180
24	Toxicity of amorphous silica nanoparticles in mouse keratinocytes. Journal of Nanoparticle Research, 2009, 11, 15-24.	1.9	179
25	Pilot-Scale in Situ Bioremediation of Uranium in a Highly Contaminated Aquifer. 1. Conditioning of a Treatment Zone. Environmental Science & Technology, 2006, 40, 3978-3985.	10.0	160
26	Synthesis of Rutile (α-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis:  Effects of Solvent Composition. Journal of Physical Chemistry B, 2004, 108, 14789-14792.	2.6	155
27	Mercury Reduction and Oxidation by Reduced Natural Organic Matter in Anoxic Environments. Environmental Science & Technology, 2012, 46, 292-299.	10.0	155
28	Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 2013, 6, 751-754.	12.9	155
29	Microbial Communities in Contaminated Sediments, Associated with Bioremediation of Uranium to Submicromolar Levels. Applied and Environmental Microbiology, 2008, 74, 3718-3729.	3.1	154
30	Natural Perchlorate Has a Unique Oxygen Isotope Signature. Environmental Science & Technology, 2004, 38, 5073-5077.	10.0	151
31	Sorption and Binary Exchange of Nitrate, Sulfate, and Uranium on an Anion-Exchange Resin. Environmental Science & Technology, 2004, 38, 3184-3188.	10.0	140
32	Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomaterialia, 2011, 7, 4253-4258.	8.3	138
33	Competitive adsorption, displacement, and transport of organic matter on iron oxide: I. Competitive adsorption. Geochimica Et Cosmochimica Acta, 1996, 60, 1943-1950.	3.9	137
34	Mercury and Other Heavy Metals Influence Bacterial Community Structure in Contaminated Tennessee Streams. Applied and Environmental Microbiology, 2011, 77, 302-311.	3.1	137
35	Bioreduction of Uranium in a Contaminated Soil Column. Environmental Science & Technology, 2005, 39, 4841-4847.	10.0	133
36	Natural Humics Impact Uranium Bioreduction and Oxidation. Environmental Science & Technology, 2005, 39, 5268-5275.	10.0	130

#	Article	IF	CITATIONS
37	Development of Novel Bifunctional Anion-Exchange Resins with Improved Selectivity for Pertechnetate Sorption from Contaminated Groundwater. Environmental Science & Technology, 2000, 34, 1075-1080.	10.0	125
38	Regeneration of Perchlorate (ClO4-)-Loaded Anion Exchange Resins by a Novel Tetrachloroferrate (FeCl4-) Displacement Technique. Environmental Science & Technology, 2001, 35, 3363-3368.	10.0	124
39	Anaerobic Mercury Methylation and Demethylation by <i>Geobacter bemidjiensis</i> Bem. Environmental Science & Technology, 2016, 50, 4366-4373.	10.0	121
40	Treatment of Perchlorate-Contaminated Groundwater Using Highly Selective, Regenerable Ion-Exchange Technologies. Environmental Science & Technology, 2007, 41, 6277-6282.	10.0	119
41	Ag@SiO2 Coreâ``Shell Nanoparticles for Probing Spatial Distribution of Electromagnetic Field Enhancement via Surface-Enhanced Raman Scattering. ACS Nano, 2009, 3, 3493-3496.	14.6	119
42	Geochemical and microbial reactions affecting the long-term performance of in situ â€~iron barriers'. Journal of Environmental Management, 2000, 4, 273-286.	1.7	114
43	Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Analytica Chimica Acta, 2007, 605, 80-86.	5.4	112
44	Kinetic Controls on the Complexation between Mercury and Dissolved Organic Matter in a Contaminated Environment. Environmental Science & Technology, 2009, 43, 8548-8553.	10.0	112
45	Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States. Environmental Science & Technology, 2010, 44, 4869-4876.	10.0	110
46	Perchlorate Isotope Forensics. Analytical Chemistry, 2005, 77, 7838-7842.	6.5	109
47	Competitive complexation of metal ions with humic substances. Chemosphere, 2005, 58, 1327-1337.	8.2	109
48	Kinetics of iron(II) oxygenation at low partial pressure of oxygen in the presence of natural organic matter. Environmental Science & Technology, 1993, 27, 1864-1870.	10.0	108
49	Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. Environmental Science & Technology, 2018, 52, 13110-13118.	10.0	106
50	Sorption and Desorption of Perchlorate and U(VI) by Strong-Base Anion-Exchange Resins. Environmental Science & Technology, 2005, 39, 901-907.	10.0	104
51	Significant Association between Sulfate-Reducing Bacteria and Uranium-Reducing Microbial Communities as Revealed by a Combined Massively Parallel Sequencing-Indicator Species Approach. Applied and Environmental Microbiology, 2010, 76, 6778-6786.	3.1	102
52	Roles of dissolved organic matter in the speciation of mercury and methylmercury in a contaminated ecosystem in Oak Ridge, Tennessee. Environmental Chemistry, 2010, 7, 94.	1.5	100
53	Controlled Fabrication of Nanopillar Arrays as Active Substrates for Surface-Enhanced Raman Spectroscopy. Langmuir, 2007, 23, 5757-5760.	3.5	98
54	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98

#	Article	IF	CITATIONS
55	Mineralogical Characteristics and Transformations during Longâ€Term Operation of a Zerovalent Iron Reactive Barrier. Journal of Environmental Quality, 2003, 32, 2033-2045.	2.0	97
56	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95
57	Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil. Geochimica Et Cosmochimica Acta, 2017, 207, 210-231.	3.9	94
58	Microbiological characteristics in a zero-valent iron reactive barrier. Environmental Monitoring and Assessment, 2002, 77, 293-309.	2.7	92
59	Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport. Geochimica Et Cosmochimica Acta, 1996, 60, 2977-2992.	3.9	88
60	Adsorption and Structural Arrangement of Cetyltrimethylammonium Cations at the Silica Nanoparticleâ~'Water Interface. Journal of Physical Chemistry B, 2004, 108, 17477-17483.	2.6	88
61	Sequestering Uranium and Technetium through Co-Precipitation with Aluminum in a Contaminated Acidic Environment. Environmental Science & amp; Technology, 2009, 43, 7516-7522.	10.0	85
62	Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Separation and Purification Technology, 1996, 6, 111-122.	0.7	84
63	Surface-enhanced Raman scattering for perchlorate detection using cystamine-modified gold nanoparticles. Analytica Chimica Acta, 2006, 567, 114-120.	5.4	84
64	Structure and Morphology Evolution of Hematite (α-Fe ₂ O ₃) Nanoparticles in Forced Hydrolysis of Ferric Chloride. Journal of Physical Chemistry C, 2008, 112, 9203-9208.	3.1	83
65	Why Dissolved Organic Matter Enhances Photodegradation of Methylmercury. Environmental Science and Technology Letters, 2014, 1, 426-431.	8.7	82
66	Complete Degradation of Perchlorate in Ferric Chloride and Hydrochloric Acid under Controlled Temperature and Pressure. Environmental Science & Technology, 2003, 37, 2291-2295.	10.0	80
67	Mercury Reduction and Cell-Surface Adsorption by <i>Geobacter sulfurreducens</i> PCA. Environmental Science & Technology, 2013, 47, 10922-10930.	10.0	78
68	Effects of Cellular Sorption on Mercury Bioavailability and Methylmercury Production by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2016, 50, 13335-13341.	10.0	78
69	Methylmercury uptake and degradation by methanotrophs. Science Advances, 2017, 3, e1700041.	10.3	78
70	Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry. PLoS ONE, 2015, 10, e0130557.	2.5	78
71	Mercury Stable Isotope Fractionation during Abiotic Dark Oxidation in the Presence of Thiols and Natural Organic Matter. Environmental Science & amp; Technology, 2019, 53, 1853-1862.	10.0	77
72	Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique. Environmental Science & Amp; Technology, 2011, 45, 3576-3583.	10.0	75

#	Article	IF	CITATIONS
73	Contrasting Effects of Dissolved Organic Matter on Mercury Methylation by <i>Geobacter sulfurreducens</i> PCA and <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science & Technology, 2017, 51, 10468-10475.	10.0	74
74	Molecular Insights into Arctic Soil Organic Matter Degradation under Warming. Environmental Science & Technology, 2018, 52, 4555-4564.	10.0	74
75	Atacama Perchlorate as an Agricultural Contaminant in Groundwater: Isotopic and Chronologic Evidence from Long Island, New York. Environmental Science & Technology, 2009, 43, 5619-5625.	10.0	72
76	Fabrication of Near-Infrared Photonic Crystals Using Highly-Monodispersed Submicrometer SiO2Spheres. Journal of Physical Chemistry B, 2003, 107, 12113-12117.	2.6	70
77	Field Tracer Tests on the Mobility of Natural Organic Matter in a Sandy Aquifer. Water Resources Research, 1996, 32, 1223-1238.	4.2	69
78	Dissolution and Mobilization of Uranium in a Reduced Sediment by Natural Humic Substances under Anaerobic Conditions. Environmental Science & Technology, 2009, 43, 152-156.	10.0	69
79	Development of gold–silica composite nanoparticle substrates for perchlorate detection by surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2006, 567, 121-126.	5.4	68
80	Phase-Dependent Photocatalytic Ability of TiO ₂ : A First-Principles Study. Journal of Chemical Theory and Computation, 2009, 5, 3074-3078.	5.3	68
81	Stoichiometry and temperature sensitivity of methanogenesis and <scp>CO</scp> ₂ production from saturated polygonal tundra in Barrow, Alaska. Global Change Biology, 2015, 21, 722-737.	9.5	68
82	Oxidation of Dissolved Elemental Mercury by Thiol Compounds under Anoxic Conditions. Environmental Science & Technology, 2013, 47, 12827-12834.	10.0	67
83	Detection and analysis of cyclotrimethylenetrinitramine (RDX) in environmental samples by surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2010, 41, 1131-1136.	2.5	65
84	Field application of palladized iron for the dechlorination of trichloroethene. Waste Management, 2000, 20, 687-694.	7.4	64
85	Efficient separation and recovery of technetium-99 from contaminated groundwater. Separation and Purification Technology, 1996, 6, 123-132.	0.7	63
86	Synthesis of rare earth doped TiO ₂ nanorods as photocatalysts for lignin degradation. Nanoscale, 2015, 7, 16695-16703.	5.6	63
87	Uranium removal from contaminated groundwater by synthetic resins. Water Research, 2008, 42, 260-268.	11.3	62
88	STUDIES ON THE ADSORPTION OF BORON ON HUMIC ACIDS. Canadian Journal of Soil Science, 1990, 70, 305-311.	1.2	61
89	Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by <i>Geobacter sulfurreducens</i> PCA. Environmental Science & Technology, 2014, 48, 11969-11976.	10.0	60
90	Warming increases methylmercury production in an Arctic soil. Environmental Pollution, 2016, 214, 504-509.	7.5	60

#	Article	IF	CITATIONS
91	Ligand-induced dissolution and release of ferrihydrite colloids. Geochimica Et Cosmochimica Acta, 2000, 64, 2027-2037.	3.9	58
92	Raman Spectroscopic Detection for Perchlorate at Low Concentrations. Applied Spectroscopy, 2004, 58, 741-744.	2.2	58
93	Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2009, 63, 98-102.	2.2	58
94	Dissolution of Uranium-Bearing Minerals and Mobilization of Uranium by Organic Ligands in a Biologically Reduced Sediment. Environmental Science & Technology, 2011, 45, 2994-2999.	10.0	57
95	Effects of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil. Soil Biology and Biochemistry, 2016, 95, 202-211.	8.8	57
96	Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS Environmental Au, 2022, 2, 77-97.	7.0	57
97	Dispersion and Aggregation of Soils as Influenced by Organic and Inorganic Polymers and Inorganic Polymers. Soil Science Society of America Journal, 1993, 57, 709-716.	2.2	56
98	Time-Dependent Density Functional Theory Assessment of UV Absorption of Benzoic Acid Derivatives. Journal of Physical Chemistry A, 2012, 116, 11870-11879.	2.5	55
99	Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Applied Microbiology and Biotechnology, 2007, 77, 713-721.	3.6	54
100	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95.	20.2	54
101	Why Mercury Prefers Soft Ligands. Journal of Physical Chemistry Letters, 2013, 4, 2317-2322.	4.6	54
102	Geochemical drivers of organic matter decomposition in arctic tundra soils. Biogeochemistry, 2015, 126, 397-414.	3.5	53
103	Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environmental Pollution, 2017, 220, 1359-1365.	7.5	53
104	Chlorine-36 as a Tracer of Perchlorate Origin. Environmental Science & Technology, 2009, 43, 6934-6938.	10.0	52
105	Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. Environmental Science & Technology, 2019, 53, 2426-2433.	10.0	52
106	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
107	Self-Assembly of Two- and Three-Dimensional Particle Arrays by Manipulating the Hydrophobicity of Silica Nanospheres. Journal of Physical Chemistry B, 2005, 109, 22175-22180.	2.6	50
108	Hydrogen-Bonded Helices for Anion Binding and Separation. Crystal Growth and Design, 2008, 8, 1909-1915.	3.0	50

#	Article	IF	CITATIONS
109	The effect of solvent concentration on the use of palladized-iron for the step-wise dechlorination of polychlorinated biphenyls in soil extracts. Waste Management, 2002, 22, 343-349.	7.4	49
110	Geochemical reactions and dynamics during titration of a contaminated groundwater with high uranium, aluminum, and calcium. Geochimica Et Cosmochimica Acta, 2003, 67, 2749-2761.	3.9	49
111	Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. Journal of Raman Spectroscopy, 2007, 38, 568-573.	2.5	49
112	A surfactant and template-free route for synthesizing ceria nanocrystals with tunable morphologies. Journal of Materials Chemistry, 2010, 20, 7776.	6.7	49
113	Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole. Science of the Total Environment, 2013, 443, 692-699.	8.0	49
114	Perchlorate Production by Photodecomposition of Aqueous Chlorine Solutions. Environmental Science & Technology, 2012, 46, 11635-11643.	10.0	48
115	Photochemical Oxidation of Dissolved Elemental Mercury by Carbonate Radicals in Water. Environmental Science and Technology Letters, 2014, 1, 499-503.	8.7	48
116	Determination of thiol functional groups on bacteria and natural organic matter in environmental systems. Talanta, 2014, 119, 240-247.	5.5	45
117	Increased Methylmercury Accumulation in Rice after Straw Amendment. Environmental Science & Technology, 2019, 53, 6144-6153.	10.0	45
118	Dissolution of Technetium(IV) Oxide by Natural and Synthetic Organic Ligands under both Reducing and Oxidizing Conditions. Environmental Science & amp; Technology, 2011, 45, 4771-4777.	10.0	44
119	Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations. Journal of Chemical Theory and Computation, 2013, 9, 555-569.	5.3	44
120	Microtopographic and depth controls on active layer chemistry in Arctic polygonal ground. Geophysical Research Letters, 2015, 42, 1808-1817.	4.0	44
121	Identification of Multiple Mercury Sources to Stream Sediments near Oak Ridge, TN, USA. Environmental Science & Technology, 2014, 48, 3666-3674.	10.0	43
122	Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry. Environmental Science and Technology Letters, 2017, 4, 59-65.	8.7	43
123	Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study. Environmental Science & Technology, 2018, 52, 1139-1149.	10.0	42
124	Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2345-2359.	3.0	41
125	Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: A case study in Namwon, Korea. Geochemical Journal, 2005, 39, 357-369.	1.0	41
126	Microbial Communities Associated with Methylmercury Degradation in Paddy Soils. Environmental Science & amp; Technology, 2020, 54, 7952-7960.	10.0	40

#	Article	IF	CITATIONS
127	Comment on "Perchlorate Identification in Fertilizers―and the Subsequent Addition/Correction. Environmental Science & Technology, 2000, 34, 4452-4453.	10.0	38
128	Impact of Sample Preparation on Mineralogical Analysis of Zeroâ€Valent Iron Reactive Barrier Materials. Journal of Environmental Quality, 2003, 32, 1299-1305.	2.0	38
129	<i>Ab initio</i> study on noncompensated CrO codoping of GaN for enhanced solar energy conversion. Journal of Chemical Physics, 2010, 132, 104501.	3.0	38
130	Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2. Applied Catalysis B: Environmental, 2011, 110, 148-153.	20.2	37
131	Survey of bottled waters for perchlorate by electrospray ionization mass spectrometry (ESI-MS) and ion chromatography (IC). Journal of the Science of Food and Agriculture, 2000, 80, 1798-1804.	3.5	36
132	One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering. Journal of Chemical Physics, 2006, 125, 081102.	3.0	36
133	Interactions of Tc(IV) with Humic Substances. Environmental Science & Technology, 2011, 45, 2718-2724.	10.0	36
134	Cysteine Inhibits Mercury Methylation by <i>Geobacter sulfurreducens</i> PCA Mutant Δ <i>omcBESTZ</i> . Environmental Science and Technology Letters, 2015, 2, 144-148.	8.7	36
135	Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China. Environmental Sciences: Processes and Impacts, 2018, 20, 673-685.	3.5	36
136	Molecular Dynamics Simulation of the Structures, Dynamics, and Aggregation of Dissolved Organic Matter. Environmental Science & Technology, 2020, 54, 13527-13537.	10.0	36
137	Stepwise Reduction Approach Reveals Mercury Competitive Binding and Exchange Reactions within Natural Organic Matter and Mixed Organic Ligands. Environmental Science & Technology, 2019, 53, 10685-10694.	10.0	35
138	The Chemistry of Perchlorate in the Environment. , 2006, , 17-47.		34
139	Fractionation of stable isotopes in perchlorate and nitrate during in situ biodegradation in a sandy aquifer. Environmental Chemistry, 2009, 6, 44.	1.5	34
140	Impacts of temperature and soil characteristics on methane production and oxidation in Arctic tundra. Biogeosciences, 2018, 15, 6621-6635.	3.3	33
141	Mercury Uptake by <i>Desulfovibrio desulfuricans</i> ND132: Passive or Active?. Environmental Science & Technology, 2019, 53, 6264-6272.	10.0	33
142	The Interaction of Polysaccharides with Silver Hill Illite. Clays and Clay Minerals, 1992, 40, 151-156.	1.3	32
143	New Surface-Enhanced Raman Spectroscopy Substrates via Self-Assembly of Silver Nanoparticles for Perchlorate Detection in Water. Applied Spectroscopy, 2005, 59, 1509-1515.	2.2	32
144	Sorption mechanisms of cephapirin, a veterinary antibiotic, onto quartz and feldspar minerals as detected by Raman spectroscopy. Environmental Pollution, 2009, 157, 1849-1856.	7.5	32

#	Article	IF	CITATIONS
145	Treatment of Perchlorate-Contaminated Groundwater Using Highly Selective, Regenerable Ion-Exchange Technology: A Pilot-Scale Demonstration. , 2002, 12, 51-68.		31
146	Determination of Technetium and Its Speciation by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2007, 79, 2341-2345.	6.5	31
147	Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles. Journal of Colloid and Interface Science, 2007, 313, 169-173.	9.4	31
148	Thiol-Facilitated Cell Export and Desorption of Methylmercury by Anaerobic Bacteria. Environmental Science and Technology Letters, 2015, 2, 292-296.	8.7	31
149	Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces. Geochimica Et Cosmochimica Acta, 2016, 188, 407-423.	3.9	31
150	Synthesis and characterization of anodized titanium-oxide nanotube arrays. Journal of Materials Science, 2009, 44, 2820-2827.	3.7	30
151	Mercury photolytic transformation affected by low-molecular-weight natural organics in water. Science of the Total Environment, 2012, 416, 429-435.	8.0	30
152	Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA. Environmental Sciences: Processes and Impacts, 2018, 20, 686-707.	3.5	30
153	Effect of Surfactants on the Formation, Morphology, and Surface Property of Synthesized SiO2Nanoparticles. Journal of Dispersion Science and Technology, 2005, 25, 593-601.	2.4	29
154	Surface interactions and degradation of a fluoroquinolone antibiotic in the dark in aqueous TiO2 suspensions. Science of the Total Environment, 2015, 532, 398-403.	8.0	29
155	Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems. Environmental Pollution, 2018, 243, 573-581.	7.5	29
156	Hydraulic performance analysis of a multiple injection–extraction well system. Journal of Hydrology, 2007, 336, 294-302.	5.4	28
157	Global Proteome Response to Deletion of Genes Related to Mercury Methylation and Dissimilatory Metal Reduction Reveals Changes in Respiratory Metabolism inGeobacter sulfurreducensPCA. Journal of Proteome Research, 2016, 15, 3540-3549.	3.7	28
158	Biogeochemical modeling of CO ₂ and CH ₄ production in anoxic Arctic soil microcosms. Biogeosciences, 2016, 13, 5021-5041.	3.3	27
159	Competitive ligand exchange reveals time dependant changes in the reactivity of Hg–dissolved organic matter complexes. Environmental Chemistry, 2012, 9, 495.	1.5	26
160	X-ray fluorescence mapping of mercury on suspended mineral particles and diatoms in a contaminated freshwater system. Biogeosciences, 2014, 11, 5259-5267.	3.3	26
161	Microbial Community and Functional Gene Changes in Arctic Tundra Soils in a Microcosm Warming Experiment. Frontiers in Microbiology, 2017, 8, 1741.	3.5	26
162	Kinetics of soil ozonation: an experimental and numerical investigation. Journal of Contaminant Hydrology, 2004, 72, 227-243.	3.3	25

#	Article	IF	CITATIONS
163	Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?. Biodegradation, 2010, 21, 81-95.	3.0	25
164	An integrated portable Raman sensor with nanofabricated gold bowtie array substrates for energetics detection. Analyst, The, 2011, 136, 1697.	3.5	25
165	Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments. PLoS ONE, 2014, 9, e102826.	2.5	25
166	Complexation of Tc(IV) with acetate at varying ionic strengths. Radiochimica Acta, 2010, 98, 583-587.	1.2	24
167	A Combined Physical–Chemical Polymerization Process for Fabrication of Nanoparticle–Hydrogel Sensing Materials. Macromolecules, 2012, 45, 8382-8386.	4.8	24
168	Nanomolar Copper Enhances Mercury Methylation by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science and Technology Letters, 2018, 5, 372-376.	8.7	24
169	Efficient Treatment of Perchlorate (ClO4 â^')-Contaminated Groundwater with Bifunctional Anion Exchange Resins. , 2000, , 165-176.		24
170	Uranium (VI) Reduction by Denitrifying Biomass. Bioremediation Journal, 2005, 9, 49-61.	2.0	23
171	High Tunability of the Surface-Enhanced Raman Scattering Response with a Metalâ^'Multiferroic Composite. Nano Letters, 2011, 11, 1265-1269.	9.1	22
172	Unexpected Effects of Gene Deletion on Interactions of Mercury with the Methylation-Deficient Mutant Δ <i>hgcAB</i> . Environmental Science and Technology Letters, 2014, 1, 271-276.	8.7	22
173	New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale, 2015, 7, 6545-6555.	5.6	22
174	The Biogeographic Pattern of Microbial Functional Genes along an Altitudinal Gradient of the Tibetan Pasture. Frontiers in Microbiology, 2017, 8, 976.	3.5	22
175	Quantitative Proteomic Analysis of Biological Processes and Responses of the Bacterium <i>Desulfovibrio desulfuricans</i> ND132 upon Deletion of Its Mercury Methylation Genes. Proteomics, 2018, 18, e1700479.	2.2	22
176	Mechanistic Modeling of Microtopographic Impacts on CO ₂ and CH ₄ Fluxes in an Alaskan Tundra Ecosystem Using the CLMâ€Microbe Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4288-4304.	3.8	22
177	Crystallite Sizes and Lattice Parameters of Nano-Biomagnetite Particles. Journal of Nanoscience and Nanotechnology, 2010, 10, 8298-8306.	0.9	21
178	Modeling anaerobic soil organic carbon decomposition in Arctic polygon tundra: insights into soil geochemical influences on carbon mineralization. Biogeosciences, 2019, 16, 663-680.	3.3	21
179	The Application and Potential Artifacts of Zeeman Cold Vapor Atomic Absorption Spectrometry in Mercury Stable Isotope Analysis. Environmental Science and Technology Letters, 2019, 6, 165-170.	8.7	21
180	Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles. Nanoscale, 2013, 5, 10369.	5.6	20

#	Article	IF	CITATIONS
181	Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β-glucosidase. Science of the Total Environment, 2019, 686, 1194-1201.	8.0	20
182	Stable Isotopic Composition of Chlorine and Oxygen in Synthetic and Natural Perchlorate. , 2006, , 93-109.		19
183	Adsorption of Hydroxy-Al Polycations and Destabilization of Illite and Montmorillonite Suspensions. Clays and Clay Minerals, 1990, 38, 493-500.	1.3	18
184	The Microstructure of Dilute Clay and Humic Acid Suspensions Revealed by Freeze-Fracture Electron Microscopy. Clays and Clay Minerals, 1992, 40, 246-250.	1.3	18
185	Advanced Thermal Characterization of Fractionated Natural Organic Matter. Journal of Environmental Quality, 2005, 34, 842-853.	2.0	18
186	Thin films of uniform hematite nanoparticles: control of surface hydrophobicity and self-assembly. Journal of Materials Chemistry, 2008, 18, 5770.	6.7	18
187	Prediction of Aluminum, Uranium, and Co-Contaminants Precipitation and Adsorption during Titration of Acidic Sediments. Environmental Science & Technology, 2013, 47, 5787-5793.	10.0	18
188	Mercury Adsorption on Minerals and Its Effect on Microbial Methylation. ACS Earth and Space Chemistry, 2019, 3, 1338-1345.	2.7	18
189	Evidence for methanobactin "Theft―and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. ISME Journal, 2022, 16, 211-220.	9.8	18
190	Effect of carboxylic and thiol ligands (oxalate, cysteine) on the kinetics of desorption of Hg(II) from kaolinite. Water, Air, and Soil Pollution, 2011, 215, 573-584.	2.4	17
191	Cometabolic biotransformation of 1,4-dioxane in mixtures with hexavalent chromium using attached and planktonic bacteria. Science of the Total Environment, 2020, 706, 135734.	8.0	17
192	Rates and Dynamics of Mercury Isotope Exchange between Dissolved Elemental Hg(0) and Hg(II) Bound to Organic and Inorganic Ligands. Environmental Science & Technology, 2020, 54, 15534-15545.	10.0	17
193	Isotope exchange between mercuric [Hg(II)] chloride and Hg(II) bound to minerals and thiolate ligands: Implications for enriched isotope tracer studies. Geochimica Et Cosmochimica Acta, 2021, 292, 468-481.	3.9	17
194	Mercury-Pollution Induction of Intracellular Lipid Accumulation and Lysosomal Compartment Amplification in the Benthic Foraminifer Ammonia parkinsoniana. PLoS ONE, 2016, 11, e0162401.	2.5	17
195	Mercury Reduction, Uptake, and Species Transformation by Freshwater Alga <i>Chlorella vulgaris</i> under Sunlit and Dark Conditions. Environmental Science & Technology, 2022, 56, 4961-4969.	10.0	17
196	Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures. Optics Express, 2011, 19, 19660.	3.4	16
197	Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique. Journal of Hazardous Materials, 2016, 317, 466-475.	12.4	15
198	Traceâ€level perchlorate analysis of impacted groundwater by elevated gold ellipse dimer nanoantenna surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2017, 48, 518-524.	2.5	15

#	Article	IF	CITATIONS
199	Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data. Science of the Total Environment, 2017, 595, 556-566.	8.0	14
200	Stable isotope analyses of oxygen (¹⁸ 0: ¹⁷ 0: ¹⁶ 0) and chlorine (³⁷ Cl: ³⁵ Cl) in perchlorate: reference materials, calibrations, methods, and interferences. Rapid Communications in Mass Spectrometry, 2017, 31, 85-110.	1.5	13
201	Stimulation of anaerobic organic matter decomposition by subsurface organic N addition in tundra soils. Soil Biology and Biochemistry, 2019, 130, 195-204.	8.8	13
202	Isotopic Tracing of Perchlorate in the Environment. Advances in Isotope Geochemistry, 2012, , 437-452.	1.4	13
203	The Design of Selective Resins for the Removal of Pertechnetate and Perchlorate from Groundwater. , 2000, , 155-164.		12
204	Synergistic Effects of a Chalkophore, Methanobactin, on Microbial Methylation of Mercury. Applied and Environmental Microbiology, 2020, 86, .	3.1	12
205	Long-term warming in a Mediterranean-type grassland affects soil bacterial functional potential but not bacterial taxonomic composition. Npj Biofilms and Microbiomes, 2021, 7, 17.	6.4	12
206	Modeling uranium transport in acidic contaminated groundwater with base addition. Journal of Hazardous Materials, 2011, 190, 863-868.	12.4	11
207	Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites. Applied Physics A: Materials Science and Processing, 2012, 106, 661-667.	2.3	11
208	Contrary effects of phytoplankton Chlorella vulgaris and its exudates on mercury methylation by iron- and sulfate-reducing bacteria. Journal of Hazardous Materials, 2022, 433, 128835.	12.4	11
209	Important Roles of Thiols in Methylmercury Uptake and Translocation by Rice Plants. Environmental Science & Technology, 2022, 56, 6765-6773.	10.0	10
210	Observations on the effect of a soil polysaccharide fraction on boron adsorption by clay minerals. Canadian Journal of Soil Science, 1992, 72, 623-626.	1.2	9
211	Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technology: A pilot-scale demonstration. Federal Facilities Environmental Journal, 2003, 14, 75-94.	0.1	9
212	Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments. Environmental Science & Technology, 2008, 42, 8007-8013.	10.0	9
213	Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater. Journal of Hazardous Materials, 2010, 178, 42-48.	12.4	9
214	Variations of Soil Microbial Community Structures Beneath Broadleaved Forest Trees in Temperate and Subtropical Climate Zones. Frontiers in Microbiology, 2017, 8, 200.	3.5	9
215	Characterization of iron oxide nanoparticle films at the air–water interface in Arctic tundra waters. Science of the Total Environment, 2018, 633, 1460-1468.	8.0	8
216	Biogeochemical, Mineralogical, and Hydrological Characteristics of an Iron Reactive Barrier Used for Treatment of Uranium and Nitrate. , 2003, , 305-342.		8

#	Article	IF	CITATIONS
217	Unravelling biogeochemical drivers of methylmercury production in an Arctic fen soil and a bog soil. Environmental Pollution, 2022, 299, 118878.	7.5	8
218	The Microstructure of Dilute Clay and Humic Acid Suspensions Revealed by Freeze-Fracture Electron Microscopy: A Reply. Clays and Clay Minerals, 1993, 41, 114-116.	1.3	7
219	Free-standing gold elliptical nanoantenna with tunable wavelength in near-infrared region for enhanced Raman spectroscopy. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
220	Quantifying pH buffering capacity in acidic, organic-rich Arctic soils: Measurable proxies and implications for soil carbon degradation. Geoderma, 2022, 424, 116003.	5.1	7
221	Using 14C-Labeled Radiochemicals Can Cause Experimental Error in Studies of the Behavior of Volatile Organic Compounds. Environmental Science & Technology, 1995, 29, 1210-1214.	10.0	6
222	Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework. Ground Water, 2011, 49, 209-218.	1.3	6
223	Anaerobic respiration pathways and response to increased substrate availability of Arctic wetland soils. Environmental Sciences: Processes and Impacts, 2020, 22, 2070-2083.	3.5	6
224	Origin of the isotopic composition of natural perchlorate: Experimental results for the impact of reaction pathway and initial ClOx reactant. Geochimica Et Cosmochimica Acta, 2021, 311, 292-315.	3.9	6
225	Recent Advances in Ion Exchange for Perchlorate Treatment, Recovery and Destruction. , 2006, , 209-251.		6
226	Optical Control of Fluorescence through Plasmonic Eigenmode Extinction. Scientific Reports, 2015, 5, 9911.	3.3	5
227	Differential Regulation of the Two Ferrochelatase Paralogues in Shewanella loihica PV-4 in Response to Environmental Stresses. Applied and Environmental Microbiology, 2016, 82, 5077-5088.	3.1	5
228	Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests. Journal of Contaminant Hydrology, 2010, 117, 37-45.	3.3	4
229	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
230	Influences of Hillslope Biogeochemistry on Anaerobic Soil Organic Matter Decomposition in a Tundra Watershed. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005512.	3.0	4
231	Dehalogenation of Chlorinated Organic Compounds by Strong Alkalis. Journal of Environmental Engineering, ASCE, 1997, 123, 982-987.	1.4	3
232	Mercury methylation potential in a sand dune on Lake Michigan's eastern shoreline. Science of the Total Environment, 2020, 729, 138879.	8.0	3
233	Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon Soils. Frontiers in Microbiology, 2020, 11, 616518.	3.5	3
234	Mechanistic Investigation of Dimethylmercury Formation Mediated by a Sulfide Mineral Surface. Journal of Physical Chemistry A, 2021, 125, 5397-5405.	2.5	3

#	Article	IF	CITATIONS
235	Response to Comment on "Anaerobic Mercury Methylation and Demethylation by Geobacter Bemidjiensis Bemâ€+ Environmental Science & Technology, 2016, 50, 9800-9801.	10.0	2
236	Competitive exchange between divalent metal ions [Cu(II), Zn(II), Ca(II)] and Hg(II) bound to thiols and natural organic matter. Journal of Hazardous Materials, 2022, 424, 127388.	12.4	2
237	Spectroscopic and computational investigations of organometallic complexation of group 12 transition metals by methanobactins from Methylocystis sp. SB2. Journal of Inorganic Biochemistry, 2021, 223, 111496.	3.5	2
238	Isotopic discrimination of natural and anthropogenic perchlorate sources in groundwater in a semi-arid region of northeastern Oregon (USA). Applied Geochemistry, 2022, 139, 105232.	3.0	2
239	Kinetics of soil ozonation: an experimental and numerical investigation*1. Journal of Contaminant Hydrology, 2004, 72, 227-227.	3.3	1
240	Complete Genome Sequences of Two Gammaproteobacterial Methanotrophs Isolated from a Mercury-Contaminated Stream. Microbiology Resource Announcements, 2021, 10, .	0.6	1
241	Reply to Comment on "Complete Degradation of Perchlorate in Ferric Chloride and Hydrochloric Acid under Controlled Temperature and Pressure― Environmental Science & Technology, 2004, 38, 1919-1920.	10.0	0
242	Application of Neutron Reflectivity for Studies of Biomolecular Structures and Functions at Interfaces. Neutron Scattering Applications and Techniques, 2009, , 463-489.	0.2	0