
Marco Gullieuszik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887628/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	GASP XXXVIII: The LOFAR-MeerKAT-VLA View on the Nonthermal Side of a Jellyfish Galaxy. Astrophysical Journal, 2022, 924, 64.	4.5	19
2	Observing Ram Pressure at Work in Intermediate Redshift Clusters with MUSE: The Case of Abell 2744 and Abell 370. Astrophysical Journal, 2022, 925, 4.	4.5	18
3	The Relevance of Ram Pressure Stripping for the Evolution of Blue Cluster Galaxies as Seen at Optical Wavelengths. Astrophysical Journal, 2022, 927, 91.	4.5	16
4	GASP XXXVII: The Most Extreme Jellyfish Galaxies Compared with Other Disk Galaxies in Clusters, an H i Study. Astrophysical Journal, 2022, 927, 39.	4.5	6
5	Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters. Astrophysical Journal, 2022, 927, 130.	4.5	34
6	Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters. Astrophysical Journal, 2022, 930, 43.	4.5	22
7	GASP. XXXII. Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies. Astrophysical Journal, 2021, 907, 22.	4.5	13
8	GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201. Astrophysical Journal, 2021, 911, 144.	4.5	24
9	GASP. XXXIII. The Ability of Spatially Resolved Data to Distinguish among the Different Physical Mechanisms Affecting Galaxies in Low-density Environments. Astrophysical Journal, 2021, 914, 27.	4.5	21
10	Formation of an ultra-diffuse galaxy in the stellar filaments of NGC 3314A: Caught in the act?. Astronomy and Astrophysics, 2021, 652, L11.	5.1	12
11	The VMC survey – XLIII. The spatially resolved star formation history across the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2021, 508, 245-266.	4.4	19
12	Two striking head–tail galaxies in the galaxy cluster IIZW108: insights into transition to turbulence, magnetic fields, and particle re-acceleration. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5326-5344.	4.4	14
13	Evidence for Mixing between ICM and Stripped ISM by the Analysis of the Gas Metallicity in the Tails of Jellyfish Galaxies. Astrophysical Journal Letters, 2021, 922, L6.	8.3	11
14	GASP XXXV: Characteristics of the Diffuse Ionised Gas in Gas-stripped Galaxies. Astrophysical Journal, 2021, 922, 131.	4.5	8
15	GASP and MaNGA Surveys Shed Light on the Enigma of the Gas Metallicity Gradients in Disk Galaxies. Astrophysical Journal, 2021, 923, 28.	4.5	13
16	GASP XXV: neutral hydrogen gas in the striking jellyfish galaxy JO204. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5029-5043.	4.4	28
17	A plague of magnetic spots among the hot stars of globular clusters. Nature Astronomy, 2020, 4, 1092-1101.	10.1	15
18	Anisotropic infall in the outskirts of OmegaWINGS galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4950-4959.	4.4	14

#	Article	IF	CITATIONS
19	Passive spirals and shock influenced star formation in the merging cluster A3376. Monthly Notices of the Royal Astronomical Society, 2020, 496, 442-455.	4.4	5
20	GASP. Astronomy and Astrophysics, 2020, 640, A22.	5.1	35
21	GASP XXIX – unwinding the arms of spiral galaxies via ram-pressure stripping. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1285-1312.	4.4	29
22	GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at zÂâ^1⁄4Â0.05: Does Ram Pressure Promote Molecular Gas Formation?. Astrophysical Journal, 2020, 889, 9.	4.5	58
23	GASP XXIV. The History of Abruptly Quenched Galaxies in Clusters. Astrophysical Journal, 2020, 892, 146.	4.5	35
24	GASP XXVII: Gas-phase Metallicity Scaling Relations in Disk Galaxies with and without Ram Pressure Stripping. Astrophysical Journal, 2020, 895, 106.	4.5	19
25	GASP. XXI. Star Formation Rates in the Tails of Galaxies Undergoing Ram Pressure Stripping. Astrophysical Journal, 2020, 899, 13.	4.5	49
26	GASP XXX. The Spatially Resolved SFR–Mass Relation in Stripping Galaxies in the Local Universe. Astrophysical Journal, 2020, 899, 98.	4.5	35
27	The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies. Astrophysical Journal Letters, 2020, 897, L30.	8.3	47
28	The second <i>u</i> -band extension of the WINGS cluster survey. Astronomy and Astrophysics, 2020, 637, A54.	5.1	4
29	GASP – XX. From the loose spatially resolved to the tight global SFR–mass relation in local spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1597-1617.	4.4	27
30	GASP – XVI. Does cosmic web enhancement turn on star formation in galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2278-2295.	4.4	34
31	GASP XVIII: star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3102-3111.	4.4	37
32	GASP – XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4580-4591.	4.4	50
33	GASP XIII. Star formation in gas outside galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4466-4502.	4.4	83
34	GASP – XIX. AGN and their outflows at the centre of jellyfish galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 486-503.	4.4	35
35	GASP. XV. A MUSE view of extreme ram-pressure stripping along the line of sight: physical properties of the jellyfish galaxy JO201. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1157-1170.	4.4	39
36	The strong correlation between post-starburst fraction and environment. Monthly Notices of the Royal Astronomical Society, 2019, 482, 881-894.	4.4	35

#	Article	IF	CITATIONS
37	GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle. Astrophysical Journal, 2019, 887, 155.	4.5	52
38	The role of environment on quenching, star formation and AGN activity. Proceedings of the International Astronomical Union, 2019, 15, 108-116.	0.0	0
39	Homogeneous metallicities and radial velocities for Galactic globular clusters. Astronomy and Astrophysics, 2018, 619, A13.	5.1	25
40	Characterization of Omega-WINGS galaxy clusters. Astronomy and Astrophysics, 2018, 609, A133.	5.1	12
41	GASP – X. APEX observations of molecular gas in the discs and in the tails of ram-pressure stripped galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2508-2520.	4.4	57
42	GASP – XII. The variety of physical processes occurring in a single galaxy group in formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3152-3169.	4.4	35
43	Enhanced Star Formation in Both Disks and Ram-pressure-stripped Tails of GASP Jellyfish Galaxies. Astrophysical Journal Letters, 2018, 866, L25.	8.3	115
44	UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4126-4135.	4.4	42
45	GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4753-4764.	4.4	123
46	GASP. VII. Signs of Gas Inflow onto a Lopsided Galaxy. Astrophysical Journal, 2018, 852, 94.	4.5	19
47	GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201. Astrophysical Journal, 2017, 844, 49.	4.5	76
48	GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. Astrophysical Journal, 2017, 844, 48.	4.5	248
49	Ram-pressure feeding of supermassive black holes. Nature, 2017, 548, 304-309.	27.8	106
50	OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe. Astrophysical Journal, 2017, 838, 148.	4.5	43
51	TheChandraDeep Field South as a test case for Global Multi Conjugate Adaptive Optics. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3569-3581.	4.4	4
52	GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at zÂâ^¼Â0.05. Astrophysical Journal, 2017, 850, 163.	4.5	10
53	GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204. Astrophysical Journal, 2017, 846, 27.	4.5	64
54	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66

4

#	Article	IF	CITATIONS
55	Multiple Spatial Frequencies Pyramid WaveFront Sensing. Publications of the Astronomical Society of the Pacific, 2017, 129, 115001.	3.1	2
56	The GOTHAM survey: chemical evolution of Milky Way globular clusters. Proceedings of the International Astronomical Union, 2017, 13, 25-28.	0.0	0
57	The concentration–mass relation of clusters of galaxies from the OmegaWINGS survey. Astronomy and Astrophysics, 2017, 607, A81.	5.1	51
58	OmegaWINGS: spectroscopy in the outskirts of local clusters of galaxies. Astronomy and Astrophysics, 2017, 599, A81.	5.1	64
59	SLOW QUENCHING OF STAR FORMATION IN OMEGAWINGS CLUSTERS: GALAXIES IN TRANSITION IN THE LOCAL UNIVERSE. Astrophysical Journal Letters, 2016, 816, L25.	8.3	75
60	JELLYFISH GALAXY CANDIDATES AT LOW REDSHIFT. Astronomical Journal, 2016, 151, 78.	4.7	136
61	Unmanned aerial vehicles in astronomy. , 2016, , .		3
62	Thermal effects on PLATO point spread function. , 2016, , .		0
63	Manufacturing and alignment tolerance analysis through Montecarlo approach for PLATO. Proceedings of SPIE, 2016, , .	0.8	2
64	Aligning the demonstration model of CHEOPS. , 2016, , .		1
65	PLATO: a multiple telescope spacecraft for exo-planets hunting. Proceedings of SPIE, 2016, , .	0.8	8
66	FORS2/VLT survey of Milky Way globular clusters. Astronomy and Astrophysics, 2016, 590, A9.	5.1	62
67	The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 177-182.	0.3	1
68	Dark tip-tilt sensing. , 2016, , .		1
69	High-z galaxies simulations: a benchmark for Global-MCAO. , 2016, , .		1
70	Exploring high-zgalaxies with the E-ELT. Astronomy and Astrophysics, 2016, 593, A24.	5.1	3
71	A testing facility at the Asiago Copernico telescope in the framework of the ADaptive Optics National laboratory of Italy: ADONI. Proceedings of SPIE, 2016, , .	0.8	0
72	Radiation, Thermal Gradient and Weight: a threefold dilemma for PLATO. , 2016, , .		0

#	Article	IF	CITATIONS
73	Morphological fractions of galaxies in WINGS clusters: revisiting the morphology–density paradigm. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3927-3944.	4.4	44
74	Properties of high z galaxies in the ELTs era. Proceedings of the International Astronomical Union, 2015, 11, 21-21.	0.0	0
75	FORS2/VLT survey of Milky Way globular clusters. Astronomy and Astrophysics, 2015, 573, A13.	5.1	24
76	OmegaWINGS: OmegaCAM-VST observations of WINGS galaxy clusters. Astronomy and Astrophysics, 2015, 581, A41.	5.1	76
77	WINGS Data Release: a database of galaxies in nearby clusters. Astronomy and Astrophysics, 2014, 564, A138.	5.1	61
78	Surface photometry of WINGS galaxies with GASPHOT. Astronomy and Astrophysics, 2014, 572, A87.	5.1	21
79	THE VMC SURVEY. XI. RADIAL STELLAR POPULATION GRADIENTS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE. Astrophysical Journal, 2014, 790, 35.	4.5	17
80	EVOLUTION OF THERMALLY PULSING ASYMPTOTIC GIANT BRANCH STARS. IV. CONSTRAINING MASS LOSS AND LIFETIMES OF LOW MASS, LOW METALLICITY AGB STARS. Astrophysical Journal, 2014, 790, 22.	4.5	68
81	The H i hole and AGB stellar population of the Sagittarius dwarf irregular galaxy. Astronomy and Astrophysics, 2014, 572, A42.	5.1	5
82	<i>U</i> -band photometry of 17 WINGS clusters. Astronomy and Astrophysics, 2014, 561, A111.	5.1	19
83	Probing the nuclear star cluster of galaxies with extremely large telescopes. Astronomy and Astrophysics, 2014, 568, A89.	5.1	14
84	The hybrid solution for the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 2013, 435, 45-63.	4.4	17
85	The VMC survey. Astronomy and Astrophysics, 2013, 554, A33.	5.1	42
86	SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT. Astrophysical Journal, 2013, 762, 77.	4.5	150
87	The evolution of galaxy sizes. Proceedings of the International Astronomical Union, 2012, 8, 151-154.	0.0	3
88	The VMC survey. Astronomy and Astrophysics, 2012, 537, A105.	5.1	33
89	The VMC survey. Astronomy and Astrophysics, 2012, 537, A106.	5.1	91
90	Homogeneous metallicities and radial velocities for Galactic globular clusters. Astronomy and Astrophysics, 2012, 540, A27.	5.1	68

#	Article	IF	CITATIONS
91	The VMC survey. Astronomy and Astrophysics, 2011, 527, A116.	5.1	237
92	A near-infrared study of AGB and red giant stars in the Leo I dSph galaxy. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	11
93	An update of the on-sky performance of the layer-oriented wavefront sensor for MAD. Proceedings of SPIE, 2010, , .	0.8	5
94	Ultrastable operation of detectors for high-resolution spectrographs. Proceedings of SPIE, 2010, , .	0.8	0
95	VARIABLE STARS IN THE FORNAX dSph GALAXY. III. THE GLOBULAR CLUSTER FORNAX 5. Astrophysical Journal, 2009, 701, 1323-1335.	4.5	17
96	M22: AN [Fe/H] ABUNDANCE RANGE REVEALED. Astrophysical Journal, 2009, 705, 1481-1491.	4.5	118
97	New constraints on the chemical evolution of the dwarf spheroidal galaxy Leo I from VLT spectroscopy. Astronomy and Astrophysics, 2009, 500, 735-747.	5.1	31
98	Looking for the Building Blocks of the Galactic Halo: Variable stars in the Fornax, Bootes I, Canes Venatici II Dwarfs and in NGC2419. , 2009, , .		0
99	A near-infrared view of AGB stars in nearby dwarf galaxies. Proceedings of the International Astronomical Union, 2009, 5, 345-346.	0.0	0
100	TP-AGB stars in population synthesis models. Proceedings of the International Astronomical Union, 2009, 5, 36-43.	0.0	2
101	The star formation history of the Fornax dwarf spheroidal galaxy. Proceedings of the International Astronomical Union, 2009, 5, 353-354.	0.0	0
102	VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies. Thirty Years of Astronomical Discovery With UKIRT, 2009, , 27-28.	0.3	0
103	Variable Stars in the Globular Clusters and in the Field of the Fornax dSph Galaxy. Globular Clusters - Guides To Galaxies, 2009, , 163-164.	0.1	0
104	The evolved stars of Leo II dSph galaxy from near-infrared UKIRT/WFCAM observations. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1185-1197.	4.4	36
105	Layer oriented: science with MAD and beyond. Proceedings of SPIE, 2008, , .	0.8	2
106	Variable Stars in the Fornax dSph Galaxy. II. Pulsating Stars below the Horizontal Branch. Astrophysical Journal, 2008, 685, 947-957.	4.5	53
107	Resolving stellar populations outside the Local Group: MAD observations of UKS 2323-326. Astronomy and Astrophysics, 2008, 483, L5-L8.	5.1	14
108	Variable Stars in the Fornax dSph Galaxy. I. The Globular Cluster Fornax 4. Astrophysical Journal, 2007, 670, 332-345.	4.5	28

#	Article	IF	CITATIONS
109	Near-infrared observations of the Fornax dwarf galaxy. Astronomy and Astrophysics, 2007, 467, 1025-1036.	5.1	40
110	Near-infrared photometry of carbon stars in the Sagittarius dwarf irregular galaxy and DDO 210. Astronomy and Astrophysics, 2007, 475, 467-477.	5.1	16
111	The blue plume population in dwarf spheroidal galaxies. Astronomy and Astrophysics, 2007, 468, 973-978.	5.1	66
112	Deep near-infrared photometry of the globular cluster 47 Tucanae. Reconciling theory and observations. Astronomy and Astrophysics, 2007, 476, 243-253.	5.1	50
113	The Oosterhoff types of the Fornax dSph Globular Clusters. Proceedings of the International Astronomical Union, 2006, 2, .	0.0	0
114	A near infrared view of Local Group dwarf galaxies. Proceedings of the International Astronomical Union, 2005, 1, 47-48.	0.0	1
115	HST/ACS observations of the old and metal-poor Sagittarius dwarf irregular galaxy. Astronomy and Astrophysics, 2005, 439, 111-127.	5.1	47
116	Distance scale, variable stars and stellar populations in Local Group galaxies. International Astronomical Union Colloquium, 2004, 193, 60-64.	0.1	1
117	The distance to the Fornax dwarf spheroidal galaxyâ~ Monthly Notices of the Royal Astronomical Society, 0, 380, 1255-1260.	4.4	64
118	GASP V: Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	22