
Francesca Risplendi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability and Bandgap Engineering of In1â^'xGaxSe Monolayer. Nanomaterials, 2022, 12, 515.	4.1	0
2	First-Principles Calculations of Exciton Radiative Lifetimes in Monolayer Graphitic Carbon Nitride Nanosheets: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 1985-1993.	5.0	20
3	Facilely synthesized nitrogen-doped reduced graphene oxide functionalized with copper ions as electrocatalyst for oxygen reduction. Npj 2D Materials and Applications, 2021, 5, .	7.9	22
4	Point Defects in Two-Dimensional Indium Selenide as Tunable Single-Photon Sources. Journal of Physical Chemistry Letters, 2021, 12, 10947-10952.	4.6	3
5	Fundamental Insights on Hydration Environment of Boric Acid and Its Role in Separation from Saline Water. Journal of Physical Chemistry C, 2020, 124, 1438-1445.	3.1	35
6	Microwaveâ€Assisted Synthesis of Copperâ€Based Electrocatalysts for Converting Carbon Dioxide to Tunable Syngas. ChemElectroChem, 2020, 7, 229-238.	3.4	22
7	Substitutional impurities in monolayer hexagonal boron nitride as single-photon emitters. Nanomaterials and Nanotechnology, 2020, 10, 184798042094934.	3.0	1
8	Unravelling electrocatalytic properties of metal porphyrin-like complexes hosted in graphene matrices. 2D Materials, 2020, 7, 025017.	4.4	7
9	Proving the existence of Mn porphyrin-like complexes hosted in reduced graphene oxide with outstanding performance as oxygen reduction reaction catalysts. 2D Materials, 2019, 6, 045001.	4.4	19
10	Nanoparticle Reshaping and Ion Migration in Nanocomposite Ultrafast Ionic Actuators: The Converse Piezo–Electro–Kinetic Effect. Advanced Functional Materials, 2019, 29, 1902941.	14.9	2
11	Unravelling Some of the Structure–Property Relationships in Graphene Oxide at Low Degree of Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 1746-1749.	4.6	26
12	Doped ordered mesoporous carbons as novel, selective electrocatalysts for the reduction of nitrobenzene to aniline. Journal of Materials Chemistry A, 2018, 6, 13397-13411.	10.3	31
13	Nanostructured Bulk-Heterojunction Solar Cells Based on Amorphous Carbon. ACS Energy Letters, 2017, 2, 882-888.	17.4	3
14	Multiple resistive switching in core–shell ZnO nanowires exhibiting tunable surface states. Journal of Materials Chemistry C, 2017, 5, 10517-10523.	5.5	40
15	A New Theoretical Insight Into ZnO NWs Memristive Behavior. Nano Letters, 2016, 16, 2543-2547.	9.1	43
16	Co-Adsorbent Effect on the Sensitization of TiO ₂ and ZnO Surfaces: A Theoretical Study. Journal of Physical Chemistry C, 2015, 119, 27348-27353.	3.1	11
17	Structure-property relations in amorphous carbon for photovoltaics. Applied Physics Letters, 2014, 105, 043903.	3.3	14
18	Functionalization layer effect on the mechanical properties of silicon based micro-cantilever mass sensors: A theoretical study. Sensors and Actuators B: Chemical, 2014, 195, 177-180.	7.8	7

FRANCESCA RISPLENDI

#	Article	IF	CITATIONS
19	Comparison of Hemi-Squaraine Sensitized TiO ₂ and ZnO Photoanodes for DSSC Applications. Journal of Physical Chemistry C, 2013, 117, 22778-22783.	3.1	30
20	A quantum-mechanical study of the adsorption of prototype dye molecules on rutile-TiO ₂ (110): a comparison between catechol and isonicotinic acid. Physical Chemistry Chemical Physics, 2013, 15, 235-243.	2.8	21
21	Si(111) surface functionalized with H-bonded SAM: A theoretical study. Applied Surface Science, 2013, 267, 17-20.	6.1	4
22	Combined experimental and theoretical investigation of the hemi-squaraine/TiO2 interface for dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 7198.	2.8	31