
José M Gualberto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5887264/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis[W]. Plant Cell, 2004, 16, 2089-2103.	6.6	1,132
2	RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature, 1989, 341, 660-662.	27.8	503
3	Plant Glutathione Peroxidases Are Functional Peroxiredoxins Distributed in Several Subcellular Compartments and Regulated during Biotic and Abiotic Stresses. Plant Physiology, 2006, 142, 1364-1379.	4.8	329
4	Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation. Annual Review of Plant Biology, 2017, 68, 225-252.	18.7	308
5	A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14545-14550.	7.1	241
6	Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe–2S] clusters. EMBO Journal, 2008, 27, 1122-1133.	7.8	231
7	The plant mitochondrial genome: Dynamics and maintenance. Biochimie, 2014, 100, 107-120.	2.6	231
8	RNA editing in plant mitochondria and chloroplasts. Plant Molecular Biology, 1996, 32, 343-365.	3.9	188
9	Functional, structural, and spectroscopic characterization of a glutathione-ligated [2Fe–2S] cluster in poplar glutaredoxin C1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7379-7384.	7.1	166
10	The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are co-transcribed. Molecular Genetics and Genomics, 1988, 215, 118-127.	2.4	162
11	Poplar Peroxiredoxin Q. A Thioredoxin-Linked Chloroplast Antioxidant Functional in Pathogen Defense. Plant Physiology, 2004, 134, 1027-1038.	4.8	155
12	Higher plant mitochondria encode an homologue of the nuclear-encoded 30-kDa subunit of bovine mitochondrial complex I. FEBS Journal, 1993, 217, 831-838.	0.2	154
13	Editing of the wheatcoxIII transcript: evidence for twelve C to U and one U to C conversions and for sequence similarities around editing sites. Nucleic Acids Research, 1990, 18, 3771-3776.	14.5	142
14	Expression of the wheat mitochondrial nad3-rps12 transcription unit: correlation between editing and mRNA maturation Plant Cell, 1991, 3, 1109-1120.	6.6	141
15	Arabidopsis Seed Mitochondria Are Bioenergetically Active Immediately upon Imbibition and Specialize via Biogenesis in Preparation for Autotrophic Growth. Plant Cell, 2017, 29, 109-128.	6.6	135
16	The Plant-Specific ssDNA Binding Protein OSB1 Is Involved in the Stoichiometric Transmission of Mitochondrial DNA in Arabidopsis Â. Plant Cell, 2007, 18, 3548-3563.	6.6	126
17	Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6002-6007.	7.1	109
18	A family of RRM-type RNA-binding proteins specific to plant mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5866-5871.	7.1	102

JOSé M GUALBERTO

#	Article	IF	CITATIONS
19	DNA Repair and the Stability of the Plant Mitochondrial Genome. International Journal of Molecular Sciences, 2020, 21, 328.	4.1	86
20	Structure-Function Relationship of the Chloroplastic Glutaredoxin S12 with an Atypical WCSYS Active Site. Journal of Biological Chemistry, 2009, 284, 9299-9310.	3.4	80
21	Two Exoribonucleases Act Sequentially to Process Mature 3′-Ends of atp9 mRNAs in Arabidopsis Mitochondria. Journal of Biological Chemistry, 2004, 279, 25440-25446.	3.4	79
22	RecA-Dependent DNA Repair Results in Increased Heteroplasmy of the Arabidopsis Mitochondrial Genome Â. Plant Physiology, 2012, 159, 211-226.	4.8	78
23	Monothiol Glutaredoxin–BolA Interactions: Redox Control of Arabidopsis thaliana BolA2 and SufE1. Molecular Plant, 2014, 7, 187-205.	8.3	70
24	<i>Arabidopsis</i> tRNA Adenosine Deaminase Arginine Edits the Wobble Nucleotide of Chloroplast tRNAArg(ACG) and Is Essential for Efficient Chloroplast Translation. Plant Cell, 2009, 21, 2058-2071.	6.6	69
25	RNA editing in plant mitochondria. Critical Reviews in Plant Sciences, 1992, 10, 503-524.	5.7	64
26	Effects of Reduced Chloroplast Gene Copy Number on Chloroplast Gene Expression in Maize Â. Plant Physiology, 2012, 160, 1420-1431.	4.8	60
27	The RECG1 DNA Translocase Is a Key Factor in Recombination Surveillance, Repair, and Segregation of the Mitochondrial DNA in Arabidopsis. Plant Cell, 2015, 27, tpc.15.00680.	6.6	55
28	Organellar non-coding RNAs: Emerging regulation mechanisms. Biochimie, 2015, 117, 48-62.	2.6	52
29	Plant mitochondrial genes can be expressed from mRNAs lacking stop codons. FEBS Letters, 2006, 580, 5641-5646.	2.8	47
30	Structural and enzymatic insights into Lambda glutathione transferases from <i>Populus trichocarpa</i> , monomeric enzymes constituting an early divergent class specific to terrestrial plants. Biochemical Journal, 2014, 462, 39-52.	3.7	46
31	Characterization of the mitochondrial orfB gene and its derivative, orf224, a chimeric open reading frame specific to one mitochondrial genome of the ?Polima? male-sterile cytoplasm in rapeseed (Brassica napus L.). Current Genetics, 1995, 28, 546-552.	1.7	45
32	A prokaryotic-type cytidine deaminase from Arabidopsis thaliana . Gene expression and functional characterization. FEBS Journal, 1999, 263, 896-903.	0.2	45
33	Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. International Journal of Molecular Sciences, 2019, 20, 4788.	4.1	44
34	Structure and transcription of the gene coding for subunit 3 of cytochrome oxidase in wheat mitochondria. Current Genetics, 1990, 17, 41-47.	1.7	43
35	Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 2020, 6, 13-21.	9.3	40
36	A RAD52â€like singleâ€stranded DNA binding protein affects mitochondrial DNA repair by recombination. Plant Journal, 2012, 72, 423-435.	5.7	39

José M Gualberto

#	Article	IF	CITATIONS
37	Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine Â. Plant Physiology, 2012, 159, 592-605.	4.8	39
38	DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion, 2014, 19, 323-328.	3.4	35
39	Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. FEBS Journal, 2001, 268, 1332-1339.	0.2	32
40	The cox1 gene from Euglena gracilis: a protist mitochondrial gene without introns and genetic code modifications Received: 10 October / 22 November 1996. Current Genetics, 1997, 31, 208-213.	1.7	31
41	The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis. Nucleic Acids Research, 2015, 43, 6500-6510.	14.5	29
42	Plastidic P2 glucose-6P dehydrogenase from poplar is modulated by thioredoxin m-type: Distinct roles of cysteine residues in redox regulation and NADPH inhibition. Plant Science, 2016, 252, 257-266.	3.6	28
43	Wheat mitochondria ccmB encodes the membrane domain of a putative ABC transporter involved in cytochrome c biogenesis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1519, 199-208.	2.4	25
44	Plant mitochondrial rps2 genes code for proteins with a C-terminal extension that is processed. Plant Molecular Biology, 2002, 50, 523-533.	3.9	25
45	Recombination in the Stability, Repair and Evolution of the Mitochondrial Genome. Advances in Botanical Research, 2012, 63, 215-252.	1.1	24
46	An upstream U-snRNA gene-like promoter is required for transcription of theArabidopsis thaliana7SL RNA gene. Nucleic Acids Research, 1995, 23, 1970-1976.	14.5	22
47	Characterization of a plant mitochondrial active chromosome. FEBS Letters, 1999, 458, 124-128.	2.8	19
48	Cis- and trans-splicing and RNA editing are required for the expression of nad2 in wheat mitochondria. Molecular Genetics and Genomics, 1998, 258, 503-511.	2.4	17
49	Insights into ascorbate regeneration in plants: investigating the redox and structural properties of dehydroascorbate reductases from <i>Populus trichocarpa</i> . Biochemical Journal, 2016, 473, 717-731.	3.7	17
50	Glutathionyl-hydroquinone reductases from poplar are plastidial proteins that deglutathionylate both reduced and oxidized glutathionylated quinones. FEBS Letters, 2015, 589, 37-44.	2.8	16
51	Role of pyrimidine salvage pathway in the maintenance of organellar and nuclear genome integrity. Plant Journal, 2019, 97, 430-446.	5.7	16
52	Chapter 12 Isolation and Fractionation of Plant Mitochondria and Chloroplasts: Specific Examples. Methods in Cell Biology, 1995, 50, 161-175.	1.1	13
53	Efficient Replication of the Plastid Genome Requires an Organellar Thymidine Kinase. Plant Physiology, 2018, 178, 1643-1656.	4.8	13
54	Nucleotide sequence of the wheat mitochondrial tRNAGlu(UUC) gene. Nucleic Acids Research, 1989, 17, 3586-3586.	14.5	10

José M Gualberto

#	Article	IF	CITATIONS
55	Sequence of theArabidopsis thaliana7SL RNA gene. Nucleic Acids Research, 1993, 21, 3581-3581.	14.5	10
56	A gene coding for an RPS2 protein is present in the mitochondrial genome of several cereals, but not in dicotyledons. Molecular Genetics and Genomics, 1998, 258, 530-537.	2.4	9
57	Regulation of mitochondrial proteolysis. FEBS Letters, 1987, 210, 142-146.	2.8	8
58	Mitochondrial Transcriptome Control and Intercompartment Cross-Talk During Plant Development. Cells, 2019, 8, 583.	4.1	7
59	Gene Expression in Higher Plant Mitochondria. Advances in Photosynthesis and Respiration, 2004, , 55-81.	1.0	7
60	RNA editing in plant mitochondria and chloroplasts. , 1996, , 343-365.		6
61	Sequence of the Mitochondrial Genome of Lactuca virosa Suggests an Unexpected Role in Lactuca sativa's Evolution. Frontiers in Plant Science, 2021, 12, 697136.	3.6	4
62	RADA-dependent branch migration has a predominant role in plant mitochondria and its defect leads to mtDNA instability and cell cycle arrest. PLoS Genetics, 2022, 18, e1010202.	3.5	2
63	Assessment of Mitochondrial DNA Copy Number, Stability, and Repair in. Methods in Molecular Biology, 2022, 2363, 301-319.	0.9	1
64	RNA Editing in Wheat Mitochondria: A New Mechanism for the Modulation of Gene Expression. , 1991, , 365-373.		0