Giuseppe Mazzarella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886582/publications.pdf

Version: 2024-02-01

126907 114465 4,043 67 33 63 citations g-index h-index papers 67 67 67 3918 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The insidious effect of diatoms on copepod reproduction. Nature, 1999, 402, 173-176.	27.8	591
2	Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts' Criteria. Nutrients, 2015, 7, 4966-4977.	4.1	423
3	Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Medicine, 2011, 9, 23.	5.5	379
4	Differential Mucosal IL-17 Expression in Two Gliadin-Induced Disorders: Gluten Sensitivity and the Autoimmune Enteropathy Celiac Disease. International Archives of Allergy and Immunology, 2010, 152, 75-80.	2.1	209
5	Transamidation of Wheat Flour Inhibits the Response to Gliadin of Intestinal T Cells in Celiac Disease. Gastroenterology, 2007, 133, 780-789.	1.3	160
6	Gliadin-Specific Type 1 Regulatory T Cells from the Intestinal Mucosa of Treated Celiac Patients Inhibit Pathogenic T Cells. Journal of Immunology, 2006, 177, 4178-4186.	0.8	119
7	Evidence for the Role of Interferon-alfa Production by Dendritic Cells in the Th1 Response in Celiac Disease. Gastroenterology, 2007, 133, 1175-1187.	1.3	119
8	Recombinant human interleukin 10 suppresses gliadin dependent T cell activation in ex vivo cultured coeliac intestinal mucosa. Gut, 2005, 54, 46-53.	12.1	115
9	IL-15 Interferes With Suppressive Activity of Intestinal Regulatory T Cells Expanded in Celiac Disease. American Journal of Gastroenterology, 2011, 106, 1308-1317.	0.4	97
10	Gliadin Activates HLA Class I-Restricted CD8+ T Cells in Celiac Disease Intestinal Mucosa and Induces the Enterocyte Apoptosis. Gastroenterology, 2008, 134, 1017-1027.	1.3	83
11	Quercetin and anti-CD95(Fas/Apo1) enhance apoptosis in HPB-ALL cell line. FEBS Letters, 1999, 462, 322-328.	2.8	81
12	Small intestinal enteropathy in non-obese diabetic mice fed a diet containing wheat. Diabetologia, 2005, 48, 931-937.	6.3	76
13	An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positive but not HLA-DQ8 negative coeliac patients. Gut, 2003, 52, 57-62.	12.1	73
14	Expression and enzymatic activity of small intestinal tissue transglutaminase in celiac disease. American Journal of Gastroenterology, 2003, 98, 1813-1820.	0.4	71
15	Immunomodulatory Effects of <i>Lactobacillus casei</i> Administration in a Mouse Model of Gliadinâ€Sensitive Enteropathy. Scandinavian Journal of Immunology, 2011, 74, 335-341.	2.7	68
16	Immunological evaluation of the alcoholâ€soluble protein fraction from glutenâ€free grains in relation to celiac disease. Molecular Nutrition and Food Research, 2011, 55, 1266-1270.	3.3	66
17	Extensive in vitro gastrointestinal digestion markedly reduces the immuneâ€toxicity of <i>Triticum monococcum</i> wheat: Implication for celiac disease. Molecular Nutrition and Food Research, 2015, 59, 1844-1854.	3.3	65
18	Overactivity of the intestinal endocannabinoid system in celiac disease and in methotrexate-treated rats. Journal of Molecular Medicine, 2007, 85, 523-530.	3.9	64

#	Article	IF	CITATIONS
19	Immunogenicity of monococcum wheat in celiac patients. American Journal of Clinical Nutrition, 2012, 96, 1339-1345.	4.7	62
20	Majority of gliadin-specific T-cell clones from celiac small intestinal mucosa produce interferon-gamma and interleukin-4. Digestive Diseases and Sciences, 1998, 43, 156-161.	2.3	52
21	Adjuvant effect of Lactobacillus casei in a mouse model of gluten sensitivity. Immunology Letters, 2008, 119, 78-83.	2.5	50
22	Spray-by-spray in situ cross-linking alginate hydrogels delivering a tea tree oil microemulsion. European Journal of Pharmaceutical Sciences, 2015, 66, 20-28.	4.0	50
23	Gluten Sensitivity in a Subset of Children With Insulin Dependent Diabetes Mellitus. American Journal of Gastroenterology, 2003, 98, 590-595.	0.4	48
24	Effector and suppressor T cells in celiac disease. World Journal of Gastroenterology, 2015, 21, 7349.	3.3	45
25	Tissue Transglutaminase Is the Target in Both Rodent and Primate Tissues for Celiac Disease–Specific Autoantibodies. Journal of Pediatric Gastroenterology and Nutrition, 2000, 31, 520-527.	1.8	44
26	Gliadin Regulates the NK-Dendritic Cell Cross-Talk by HLA-E Surface Stabilization. Journal of Immunology, 2007, 179, 372-381.	0.8	44
27	c9,t11-Conjugated linoleic acid ameliorates steatosis by modulating mitochondrial uncoupling and Nrf2 pathway. Journal of Lipid Research, 2014, 55, 837-849.	4.2	43
28	Constitutive Activation of the Signal Transducer and Activator of Transcription Pathway in Celiac Disease Lesions. American Journal of Pathology, 2003, 162, 1845-1855.	3.8	42
29	Bacillus subtilis spores reduce susceptibility to Citrobacter rodentium-mediated enteropathy in a mouse model. Research in Microbiology, 2006, 157, 891-897.	2.1	41
30	Pathogenic Role of Associated Adherentâ€Invasive <i>Escherichia coli</i> in Crohn's Disease. Journal of Cellular Physiology, 2017, 232, 2860-2868.	4.1	40
31	Reintroduction of Gluten Following Flour Transamidation in Adult Celiac Patients: A Randomized, Controlled Clinical Study. Clinical and Developmental Immunology, 2012, 2012, 1-10.	3.3	38
32	Keratinocyte growth factor and coeliac disease. Gut, 2001, 49, 176-181.	12.1	34
33	Enhanced Expression of Interferon Regulatory Factor-1 in the Mucosa of Children with Celiac Disease. Pediatric Research, 2003, 54, 312-318.	2.3	34
34	Conjugated linoleic acid enhances glutathione synthesis and attenuates pathological signs in MRL/MpJ-Faslpr mice. Journal of Lipid Research, 2006, 47, 2382-2391.	4.2	31
35	Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase. Journal of Leukocyte Biology, 2013, 93, 479-488.	3.3	31
36	Conjugated linoleic acid protects against gliadinâ€induced depletion of intestinal defenses. Molecular Nutrition and Food Research, 2011, 55, S248-56.	3.3	30

#	Article	IF	Citations
37	Immunogenicity of two oat varieties, in relation to their safety for celiac patients. Scandinavian Journal of Gastroenterology, 2011, 46, 1194-1205.	1.5	28
38	Immunoregulatory Pathways Are Active in the Small Intestinal Mucosa of Patients with Potential Celiac Disease. American Journal of Gastroenterology, 2013, 108, 1775-1784.	0.4	28
39	Nonâ€Celiac Gluten Sensitivity: How Its Gut Immune Activation and Potential Dietary Management Differ from Celiac Disease. Molecular Nutrition and Food Research, 2018, 62, e1700854.	3.3	27
40	A deregulated immune response to gliadin causes a decreased villus height in DQ8 transgenic mice. European Journal of Immunology, 2009, 39, 3552-3561.	2.9	25
41	IBD: Role of intestinal compartments in the mucosal immune response. Immunobiology, 2020, 225, 151849.	1.9	24
42	Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation. PLoS ONE, 2015, 10, e0144634.	2.5	24
43	Characterization of the Anti-Tissue Transglutaminase Antibody Response in Nonobese Diabetic Mice. Journal of Immunology, 2005, 174, 5830-5836.	0.8	23
44	Identical T-Cell Receptor \hat{I}^2 Chain Rearrangements Are Present in T Cells Infiltrating the Jejunal Mucosa of Untreated Celiac Patients. Human Immunology, 1997, 55, 22-33.	2.4	21
45	Celiac disease: role of intestinal compartments in the mucosal immune response. Molecular and Cellular Biochemistry, 2016, 411, 341-349.	3.1	21
46	Gliadin activates mucosal cell mediated immunity in cultured rectal mucosa from coeliac patients and a subset of their siblings. Gut, 1998, 43, 484-489.	12.1	19
47	Water Buffalo Mozzarella Cheese Stored in Polysaccharide-Based Gels: Correlation Between Prolongation of the Shelf-Life and Physicochemical Parameters. Journal of Dairy Science, 2008, 91, 1317-1324.	3.4	18
48	Reproductive activity of <i> bombina pachypus < /i > from southern Italy. Italian Journal of Zoology, 1998, 65, 335-342.</i>	0.6	17
49	Down-regulation of ERK1 and ERK2 activity during differentiation of the intestinal cell line HT-29. Molecular and Cellular Biochemistry, 2002, 231, 43-50.	3.1	17
50	The effects of modified versus unmodified wheat gluten administration in patients with celiac disease. International Immunopharmacology, 2017, 47, 1-8.	3.8	16
51	Modulatory activity of Lactobacillus rhamnosus OLL2838 in a mouse model of intestinal immunopathology. Immunobiology, 2015, 220, 701-710.	1.9	15
52	Gluten Induces Subtle Histological Changes in Duodenal Mucosa of Patients with Non-Coeliac Gluten Sensitivity: A Multicentre Study. Nutrients, 2022, 14, 2487.	4.1	14
53	Mechanisms underlying the hormetic effect of conjugated linoleic acid: Focus on Nrf2, mitochondria and NADPH oxidases. Free Radical Biology and Medicine, 2021, 167, 276-286.	2.9	13
54	Gliadin-Specific CD8+ T Cell Responses Restricted by HLA Class I A*0101 and B*0801 Molecules in Celiac Disease Patients. Journal of Immunology, 2017, 198, 1838-1845.	0.8	12

#	Article	IF	CITATIONS
55	Tailoring the immune response to wheat gliadin by enzymatic transamidation. Cytokine, 2019, 117, 23-29.	3.2	11
56	<i>Prunus Mahaleb</i> Fruit Extract Prevents Chemically Induced Colitis and Enhances Mitochondrial Oxidative Metabolism via the Activation of the Nrf2 Pathway. Molecular Nutrition and Food Research, 2019, 63, e1900350.	3.3	10
57	Immunogenic Peptides Can Be Detected in Whole Gluten by Transamidating Highly Susceptible Glutamine Residues: Implication in the Search for Gluten-free Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 747-754.	5.2	9
58	Gliadin intake alters the small intestinal mucosa in indomethacin-treated HLA-DQ8 transgenic mice. American Journal of Physiology - Renal Physiology, 2014, 307, G302-G312.	3.4	9
59	Laser Capture Microdissection as a Tool to Study the Mucosal Immune Response in Celiac Disease. Methods in Molecular Biology, 2018, 1723, 139-154.	0.9	6
60	Adult autoimmune enteropathy in autoimmune hepatitis patient. Case report and literature review. Clinics and Research in Hepatology and Gastroenterology, 2021, 45, 101673.	1.5	5
61	Triticum monococcum amylase trypsin inhibitors possess a reduced potential to elicit innate immune response in celiac patients compared to Triticum aestivum. Food Research International, 2021, 145, 110386.	6.2	5
62	First morphological-level insights into the efficiency of green tea catechins and grape seed procyanidins on a transgenic mouse model of celiac disease enteropathy. Food and Function, 2021, 12, 5903-5912.	4.6	3
63	Analysis of hypoxia-associated dendritic cells in colitic mice and effects of probiotics on IL-10 production in inflammatory dendritic-cells under hypoxia. Beneficial Microbes, 2019, 10, 801-810.	2.4	2
64	Beneficial effects of a <i>T. monococcum</i> wheat cultivar on diabetes incidence evaluated in non-obese diabetic mice and after <i>in vitro</i> simulated gastroduodenal digestion. International Journal of Food Sciences and Nutrition, 2022, 73, 327-335.	2.8	2
65	Innate immunity is a late event in the onset of gliadin-specific enteropathy in the HLA-DQ8 mice. Immunobiology, 2020, 225, 151903.	1.9	1
66	Regulatory T Cells in the Coeliac Intestinal Mucosa. , 2008, , 181-187.		0
67	Cell-type-specific gene expression profile by laser capture microdissection on mirror sections. Journal of Immunological Methods, 2022, 505, 113276.	1.4	O