Antonio Felipe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5886490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S-acylation-dependent membrane microdomain localization of the regulatory Kvl²2.1 subunit. Cellular and Molecular Life Sciences, 2022, 79, 230.	5.4	6
2	The Mitochondrial Routing of the Kv1.3 Channel. Frontiers in Oncology, 2022, 12, 865686.	2.8	9
3	Calmodulin-dependent KCNE4 dimerization controls membrane targeting. Scientific Reports, 2021, 11, 14046.	3.3	6
4	KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Scientific Reports, 2021, 11, 14632.	3.3	4
5	A novel mitochondrial Kv1.3â \in "caveolin axis controls cell survival and apoptosis. ELife, 2021, 10, .	6.0	10
6	Kv1.3 Controls Mitochondrial Dynamics during Cell Cycle Progression. Cancers, 2021, 13, 4457.	3.7	4
7	The Cardiac Kv7.1-KCNE1 Channel Assembles at ER-PM Junctions before Translocated to the Plasma Membrane. Biophysical Journal, 2020, 118, 261a.	0.5	0
8	Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells, 2020, 9, 1833.	4.1	24
9	Remodeling of Kv7.1 and Kv7.5 Expression in Vascular Tumors. International Journal of Molecular Sciences, 2020, 21, 6019.	4.1	5
10	Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex. Cells, 2020, 9, 1128.	4.1	4
11	The unconventional biogenesis of Kv7.1-KCNE1 complexes. Science Advances, 2020, 6, eaay4472.	10.3	9
12	KV1.3 Interacts with a Calmodulin-Binding Tetraleucine Motif of KCNE4. Biophysical Journal, 2020, 118, 262a.	0.5	0
13	Triple-Colocalization Approach to Assess Traffic Patterns and Their Modulation. Methods in Molecular Biology, 2019, 2040, 215-233.	0.9	8
14	Caveolar Kv1.3 Targeting Participates in the Adipocyte Physiology. Biophysical Journal, 2019, 116, 541a.	0.5	0
15	Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochemical Pharmacology, 2019, 165, 214-220.	4.4	18
16	Implication of Voltage-Gated Potassium Channels in Neoplastic Cell Proliferation. Cancers, 2019, 11, 287.	3.7	55
17	The calmodulinâ€binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3. FASEB Journal, 2019, 33, 8263-8279.	0.5	7
18	Probing Kv1.3 Interactome with Proximity-Dependent Biotinylation. Biophysical Journal, 2019, 116, 250a.	0.5	0

#	Article	IF	CITATIONS
19	The Potassium Channel Odyssey: Mechanisms of Traffic and Membrane Arrangement. International Journal of Molecular Sciences, 2019, 20, 734.	4.1	55
20	PKC Activation Induces Ubiquitination-Dependent KV1.3 Endocytosis Mediated by Nedd4-2 Ubiquitin Ligase. Biophysical Journal, 2018, 114, 301a.	0.5	0
21	Kv1.3: a multifunctional channel with many pathological implications. Expert Opinion on Therapeutic Targets, 2018, 22, 101-105.	3.4	34
22	The Spanish Ion Channel Initiative (SICI) Consortium: Ten Years (2008–2018) of a Network of Excellence on Ion Channel Research. International Journal of Molecular Sciences, 2018, 19, 3514.	4.1	1
23	D242N, a KV7.1 LQTS Mutation Uncovers a KEY Residue for IKS Voltage Dependence. Biophysical Journal, 2018, 114, 307a.	0.5	Ο
24	Caveolar targeting links Kv1.3 with the insulin-dependent adipocyte physiology. Cellular and Molecular Life Sciences, 2018, 75, 4059-4075.	5.4	17
25	Kv1.3 In Microglia: Neuroinflammatory Determinant and Promising Pharmaceutical Target. Journal of Neurology and Neuromedicine, 2018, 3, 18-23.	0.9	2
26	Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation. Scientific Reports, 2017, 7, 42395.	3.3	21
27	ERK1/2 Mediates EGF-Dependent Kv1.3 Endocytosis. Biophysical Journal, 2017, 112, 251a-252a.	0.5	Ο
28	Deciphering the Kv1.3/Caveolin Interaction. Biophysical Journal, 2017, 112, 252a.	0.5	0
29	The C-Terminal Domain of Kv1.3 Interacts with KCNE4 to form Oligomeric Channels. Biophysical Journal, 2017, 112, 545a.	0.5	Ο
30	D242N, a KV7.1 LQTS mutation uncovers a key residue for IKs voltage dependence. Journal of Molecular and Cellular Cardiology, 2017, 110, 61-69.	1.9	11
31	IKs Computational Modeling to Enforce the Investigation of D242N, a KV7.1 LQTS Mutation. , 2017, , .		Ο
32	Caveolin interaction governs Kv1.3 lipid raft targeting. Scientific Reports, 2016, 6, 22453.	3.3	35
33	A New KCNQ1 Mutation at the S5 Segment that Impairs its Association with KCNE1 is Responsible for Short QT Syndrome. Biophysical Journal, 2016, 110, 448a-449a.	0.5	Ο
34	The carboxy terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit. Journal of Cell Science, 2016, 129, 4265-4277.	2.0	16
35	The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opinion on Therapeutic Targets, 2016, 20, 577-591.	3.4	77
36	Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cellular and Molecular Life Sciences, 2016, 73, 1515-1528.	5.4	16

#	Article	IF	CITATIONS
37	EGF and the potassium channel Kv1.3 are promising pharmacological targets against neuro-degenerative diseases. Journal of Neurology and Neuromedicine, 2016, 1, 14-18.	0.9	Ο
38	Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains. Cardiovascular Research, 2015, 105, 223-232.	3.8	24
39	Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2477-2492.	2.6	106
40	Unconventional calmodulin anchoring site within the AB module of Kv7.2 channels. Journal of Cell Science, 2015, 128, 3155-63.	2.0	11
41	A new <i>KCNQ1</i> mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome. Cardiovascular Research, 2015, 107, 613-623.	3.8	67
42	Functional Assembly of Kv7.1/Kv7.5 Channels With Emerging Properties on Vascular Muscle Physiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1522-1530.	2.4	26
43	Ion channels and anti-cancer immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130106.	4.0	50
44	A Non-Canonical Di-Acidic Signal at the C-Terminal of KV1.3 Determines Anterograde Trafficking and Surface Expression. Biophysical Journal, 2014, 106, 739a.	0.5	0
45	A non-canonical di-acidic signal at the C-terminal of Kv1.3 determines anterograde trafficking and surface expression. Journal of Cell Science, 2013, 126, 5681-91.	2.0	19
46	Emerging role for the voltage-dependent K+ channel Kv1.5 in B-lymphocyte physiology: expression associated with human lymphoma malignancy. Journal of Leukocyte Biology, 2013, 94, 779-789.	3.3	29
47	The voltage-dependent K+ channels Kv1.3 and Kv1.5 in human cancer. Frontiers in Physiology, 2013, 4, 283.	2.8	99
48	KCNE gene expression is dependent on the proliferation and mode of activation of leukocytes. Channels, 2013, 7, 85-96.	2.8	10
49	Targeting the Voltage-Dependent K+ Channels Kv1.3 and Kv1.5 as Tumor Biomarkers for Cancer Detection and Prevention. Current Medicinal Chemistry, 2012, 19, 661-674.	2.4	62
50	Protein Kinase C (PKC) Activity Regulates Functional Effects of Kvβ1.3 Subunit on KV1.5 Channels. Journal of Biological Chemistry, 2012, 287, 21416-21428.	3.4	19
51	Increased voltage-dependent K+ channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncology Letters, 2012, 4, 227-230.	1.8	27
52	Selective Formation of Oligomeric Kv7.5 (KCNQ5)/KCNE1 and Kv7.5 (KCNQ5)/KCNE3 Channels. Differential Targeting to Membrane Surface Microdomains. Biophysical Journal, 2012, 102, 678a.	0.5	0
53	Voltage-Dependent Potassium Channels Kv1.3 and Kv1.5 in Human Cancer. Biophysical Journal, 2012, 102, 135a.	0.5	34
54	Differential Expression of Kv1.3 and Kv1.5 Voltage-Dependent K ⁺ Channels in Human Skeletal Muscle Sarcomas. Cancer Investigation, 2012, 30, 203-208.	1.3	21

#	Article	IF	CITATIONS
55	Targeting of Kv7.5 (KCNQ5)/KCNE channels to surface microdomains of cell membranes. Muscle and Nerve, 2012, 45, 48-54.	2.2	8
56	Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochemical Pharmacology, 2010, 80, 858-866.	4.4	71
57	Impact of KCNE subunits on KCNQ1 (Kv7.1) channel membrane surface targeting. Journal of Cellular Physiology, 2010, 225, 692-700.	4.1	33
58	Kv1.5 in the Immune System: the Good, the Bad, or the Ugly?. Frontiers in Physiology, 2010, 1, 152.	2.8	16
59	Voltage-dependent Potassium Channels Kv1.3 and Kv1.5 in Human Fetus. Cellular Physiology and Biochemistry, 2010, 26, 219-226.	1.6	17
60	Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. Journal of General Physiology, 2010, 135, 135-147.	1.9	74
61	Does a physiological role for KCNE subunits exist in the immune system?. Communicative and Integrative Biology, 2010, 3, 166-168.	1.4	9
62	Immunomodulation of Voltage-Dependent K+ Channels in Macrophages: Molecular and Biophysical Consequences. Biophysical Journal, 2010, 98, 118a.	0.5	0
63	KCNE4 suppresses Kv1.3 currents by modulating trafficking, surface expression and channel gating. Journal of Cell Science, 2009, 122, 3738-3748.	2.0	64
64	Developmental Switch of the Expression of Ion Channels in Human Dendritic Cells. Journal of Immunology, 2009, 183, 4483-4492.	0.8	51
65	Functional Implications of KCNE Subunit Expression for the Kv7.5 (KCNQ5) Channel. Cellular Physiology and Biochemistry, 2009, 24, 325-334.	1.6	26
66	Voltage-Dependent Potassium Channels Kv1.3 and Kv1.5 in Human Cancer. Current Cancer Drug Targets, 2009, 9, 904-914.	1.6	71
67	Partnership interactions target Kv1.5 to distinct membrane surface microdomains. Biophysical Journal, 2009, 96, 176a.	0.5	Ο
68	Differential Regulation Of Navß Subunits During Myogenesis. Biophysical Journal, 2009, 96, 250a-251a.	0.5	1
69	Multiple Kv1.5 targeting to membrane surface microdomains. Journal of Cellular Physiology, 2008, 217, 667-673.	4.1	34
70	Cell cycle-dependent expression of Kv1.5 is involved in myoblast proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 728-736.	4.1	38
71	Differential regulation of Navl² subunits during myogenesis. Biochemical and Biophysical Research Communications, 2008, 368, 761-766.	2.1	13
72	Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochemical and Biophysical Research Communications, 2008, 369, 1094-1097.	2.1	39

#	Article	IF	CITATIONS
73	Kv1.5 Association Modifies Kv1.3 Traffic and Membrane Localization. Journal of Biological Chemistry, 2008, 283, 8756-8764.	3.4	63
74	Potassium Channels are a New Target Field in Anticancer Drug Design. Recent Patents on Anti-Cancer Drug Discovery, 2007, 2, 212-223.	1.6	46
75	Voltage-dependent Na+ channel phenotype changes in myoblasts. Consequences for cardiac repairâ~†. Cardiovascular Research, 2007, 76, 430-441.	3.8	11
76	Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochemical and Biophysical Research Communications, 2007, 352, 913-918.	2.1	65
77	Cloning, molecular characterization and expression of ecto-nucleoside triphosphate diphosphohydrolase-1 from Torpedo electric organ. Neurochemistry International, 2007, 50, 256-263.	3.8	5
78	Potassium channels: New targets in cancer therapy. Cancer Detection and Prevention, 2006, 30, 375-385.	2.1	114
79	Association of Kv1.5 and Kv1.3 Contributes to the Major Voltage-dependent K+ Channel in Macrophages. Journal of Biological Chemistry, 2006, 281, 37675-37685.	3.4	125
80	Expression of concentrative nucleoside transporters SLC28 (CNT1, CNT2, and CNT3) along the rat nephron: Effect of diabetes. Kidney International, 2005, 68, 665-672.	5.2	41
81	KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: Expression associated with testis pathologies. Journal of Cellular Physiology, 2005, 202, 400-410.	4.1	29
82	Pattern of Kvβ Subunit Expression in Macrophages Depends upon Proliferation and the Mode of Activation. Journal of Immunology, 2005, 174, 4736-4744.	0.8	54
83	Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. International Journal of Biochemistry and Cell Biology, 2005, 37, 1084-1104.	2.8	144
84	The systemic inflammatory response is involved in the regulation of K+channel expression in brain via TNF-α-dependent and -independent pathways. FEBS Letters, 2004, 572, 189-194.	2.8	26
85	Voltage-dependent K+channel β subunits in muscle: Differential regulation during postnatal development and myogenesis. Journal of Cellular Physiology, 2003, 195, 187-193.	4.1	28
86	Impaired voltage-gated K+channel expression in brain during experimental cancer cachexia. FEBS Letters, 2003, 536, 45-50.	2.8	20
87	Differential Voltage-dependent K+ Channel Responses during Proliferation and Activation in Macrophages. Journal of Biological Chemistry, 2003, 278, 46307-46320.	3.4	154
88	Interferon-Î ³ regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways. Biochemical Journal, 2003, 375, 777-783.	3.7	41
89	Different Kv2.1/Kv9.3 heteromer expression during brain and lung post-natal development in the rat. Journal of Physiology and Biochemistry, 2002, 58, 195-203.	3.0	8
90	One-step reverse transcription polymerase chain reaction for semiquantitative analysis of mRNA expression. Methods and Findings in Experimental and Clinical Pharmacology, 2002, 24, 253.	0.8	18

#	Article	IF	CITATIONS
91	Developmental regulation of the concentrative nucleoside transporters CNT1 and CNT2 in rat liver. Journal of Hepatology, 2001, 34, 873-880.	3.7	40
92	Lipopolysaccharide-induced Apoptosis of Macrophages Determines the Up-regulation of Concentrative Nucleoside Transporters Cnt1 and Cnt2 through Tumor Necrosis Factor-α-dependent and -independent Mechanisms. Journal of Biological Chemistry, 2001, 276, 30043-30049.	3.4	75
93	Macrophages require different nucleoside transport systems for proliferation and activation. FASEB Journal, 2001, 15, 1979-1988.	0.5	94
94	Hepatic Transport of Gluconeogenic Substrates During Tumor Growth in the Rat. Cancer Investigation, 2001, 19, 248-255.	1.3	0
95	Nitric oxide regulates nucleoside transport in activated B lymphocytes. Journal of Leukocyte Biology, 2000, 67, 345-349.	3.3	26
96	Selective loss of nucleoside carrier expression in rat hepatocarcinomas. Hepatology, 2000, 32, 239-246.	7.3	55
97	Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology, 2000, 119, 1623-1630.	1.3	68
98	Oxygen Sensitivity of Cloned Voltage-Gated K ⁺ Channels Expressed in the Pulmonary Vasculature. Circulation Research, 1999, 85, 489-497.	4.5	158
99	Lack of effect of clinical doses of cyclosporin A on erythrocyte Na+/K+-ATPase activity. Clinical Science, 1999, 97, 283-290.	4.3	2
100	Lack of effect of clinical doses of cyclosporin A on erythrocyte Na+/K+-ATPase activity. Clinical Science, 1999, 97, 283.	4.3	1
101	Differential expression and regulation of nucleoside transport systems in rat liver parenchymal and hepatoma cells. Hepatology, 1998, 28, 1504-1511.	7.3	73
102	Nucleoside transporters and liver cell growth. Biochemistry and Cell Biology, 1998, 76, 771-777.	2.0	26
103	Regulation of Nucleoside Transport by Lipopolysaccharide, Phorbol Esters, and Tumor Necrosis Factor-α in Human B-lymphocytes. Journal of Biological Chemistry, 1998, 273, 26939-26945.	3.4	56
104	Na+-dependent nucleoside transport in liver: two different isoforms from the same gene family are expressed in liver cells. Biochemical Journal, 1998, 330, 997-1001.	3.7	70
105	Na+,K+-ATPase Expression in Maleic-Acid-Induced Fanconi Syndrome in Rats. Clinical Science, 1997, 92, 247-253.	4.3	12
106	Expression of Sodium-Dependent Purine Nucleoside Carrier (SPNT) mRNA Correlates with Nucleoside Transport Activity in Rat Liver. Biochemical and Biophysical Research Communications, 1997, 233, 572-575.	2.1	18
107	Molecular Cloning of a Bovine Renal G-Protein Coupled Receptor Gene (bRGR): Regulation of bRGR mRNA Levels by Amino Acid Availability. Biochemical and Biophysical Research Communications, 1997, 238, 107-112.	2.1	3
108	Cytoskeletal-dependent activation of system A for neutral amino acid transport in osmotically stressed mammalian cells: A role for system A in the intracellular accumulation of osmolytes. , 1997, 173, 343-350.		11

#	Article	IF	CITATIONS
109	Hormonal regulation of concentrative nucleoside transport in liver parenchymal cells. Biochemical Journal, 1996, 313, 915-920.	3.7	41
110	Regulation of Na+,K+-ATPase and the Na+/K+/Cl+ co-transporter in the renal epithelial cell line NBL-1 under osmotic stress. Biochemical Journal, 1996, 319, 337-342.	3.7	30
111	Effects of cyclosporine A on Na,K-ATPase expression in the renal epithelial cell line NBL-1. Kidney International, 1996, 50, 1483-1489.	5.2	19
112	Ontogeny of L-Alanine Uptake in Plasma Membrane Vesicles from Rat Liver. Pediatric Research, 1995, 38, 81-85.	2.3	1
113	Na+,K+-ATPase expression during the early phase of liver growth after partial hepatectomy. FEBS Letters, 1995, 362, 85-88.	2.8	16
114	Up-regulation of liver system A for neutral amino acid transport in euglycemic hyperinsulinemic rats. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 63-69.	4.1	10
115	Coordinate induction of Na+-dependent transport systems and Na+,K+-ATPase in the liver of obese Zucker rats. Biochimica Et Biophysica Acta - Biomembranes, 1994, 1196, 45-50.	2.6	7
116	Alanine uptake by liver of mid-lactating rats. Metabolism: Clinical and Experimental, 1993, 42, 1109-1115.	3.4	4
117	Up-regulation of system A activity in the regenerating rat liver. FEBS Letters, 1993, 329, 189-193.	2.8	23
118	Early induction of Na+-dependent uridine uptake in the regenerating rat liver. FEBS Letters, 1993, 316, 85-88.	2.8	29
119	Uridine transport in basolateral plasma membrane vesicles from rat liver. Journal of Membrane Biology, 1992, 128, 227-33.	2.1	32
120	Changes in alanine and glutamine transport during rat red blood cell maturation. Bioscience Reports, 1992, 12, 47-56.	2.4	5
121	Enhanced N-system activity for neutral amino acid transport in plasma membrane vesicles from livers of genetically obese Zucker rats. Biochemical Society Transactions, 1990, 18, 1249-1249.	3.4	1
122	Role of substrate availability on net <scp>l</scp> -lactate uptake by liver of fed and 24-h-starved rats. Biochemical Society Transactions, 1990, 18, 995-996.	3.4	0
123	Cationic and anionic amino acid transport studies in rat red blood cells. Bioscience Reports, 1990, 10, 527-535.	2.4	12
124	Bicarbonate stimulation of Na+ transport in liver basolateral plasma membrane vesicles requires the presence of a transmembrane pH gradient. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1029, 61-66.	2.6	6
125	Amino Acid Uptake by Liver in Pregnant and Lactating Rats. , 1990, , 287-290.		1
126	Na+-Dependent Alanine Transport in Plasma Membrane Vesicles from Late-Pregnant Rat Livers. Pediatric Research, 1989, 26, 448-451.	2.3	16

#	Article	IF	CITATIONS
127	Carrier-mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. FEBS Letters, 1988, 235, 224-228.	2.8	18
128	Reduced noradrenaline turnover in brown adipose tissue of lactating rats. Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 86, 481-483.	0.6	16
129	Sequential changes in brown adipose tissue composition, cytochrome oxidase activity and GDP binding throughout pregnancy and lactation in the rat. Biochimica Et Biophysica Acta - General Subjects, 1986, 882, 187-191.	2.4	37
130	Brown adipose tissue activity in hypocaloric-diet fed lactating rats. Bioscience Reports, 1986, 6, 669-675.	2.4	9
131	Oligomerization and Spatial Distribution of Kvl²1.1 and Kvl²2.1 Regulatory Subunits. Frontiers in Physiology, 0, 13, .	2.8	1