Van An Dinh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884686/publications.pdf

Version: 2024-02-01

68 2,213 18 46
papers citations h-index g-index

72 72 72 2288
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Efficient synergism of NiO-NiSe2 nanosheet-based heterostructures shelled titanium nitride array for robust overall water splitting. Journal of Colloid and Interface Science, 2022, 612, 121-131.	9.4	10
2	Understanding doping effects on P2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><r< td=""><td>nml:mi>x<td>nl:mi></td></td></r<></mml:msub></mml:mrow></mml:math 	nml:mi>x <td>nl:mi></td>	nl:mi>

#	Article	IF	CITATIONS
19	Adsorption of 2-Butanone on Pristine Graphene: A First-principles Study. VNU Journal of Science Mathematics - Physics, 2020, 36, .	0.1	4
20	DFT Study on Adsorption of Acetone and Toluene on Silicene. VNU Journal of Science Mathematics - Physics, 2020, 36, .	0.1	4
21	Insight into Diffusion Mechanism in Cathode Materials NaVPO ₅ and NaVFPO ₄ for Sodium Ion Batteries: DFT Investigation. ECS Meeting Abstracts, 2020, MA2020-02, 275-275.	0.0	0
22	Two-dimensional Na _x SiS as a promising anode material for rechargeable sodium-based batteries: <i>ab initio</i> material design. Physical Chemistry Chemical Physics, 2019, 21, 24326-24332.	2.8	13
23	Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the \hat{l}^2 -phase vanadium hydride by first principles calculations. Theoretical Chemistry Accounts, 2019, 138, 1.	1.4	3
24	Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO ₄ and VOPO ₄ for rechargeable sodium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 23625-23634.	2.8	22
25	First principles study of the crystal, electronic structure, and diffusion mechanism of polaron-Na vacancy of Na ₃ MnPO ₄ CO ₃ for Na-ion battery applications. Journal Physics D: Applied Physics, 2017, 50, 045502.	2.8	18
26	Na-ion diffusion in a NASICON-type solid electrolyte: a density functional study. Physical Chemistry Chemical Physics, 2016, 18, 27226-27231.	2.8	36
27	First-principles Calculation of Effects of Carbon on Tetragonality and Magnetic Moment in Fe–C System. ISIJ International, 2015, 55, 2483-2491.	1.4	15
28	Hybrid functional study of the NASICON-type Na ₃ : crystal and electronic structures, and polaron–Na vacancy complex diffusion. Physical Chemistry Chemical Physics, 2015, 17, 30433-30439.	2.8	84
29	Measuring the Impacts of Internet Banking to Bank Performance: Evidence from Vietnam. Journal of Internet Banking and Commerce, 2015, 20, .	0.1	9
30	First-Principles Calculation of the Effects of Carbon on Tetragonality and Magnetic Moment of BCC-Fe. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1329-1338.	0.4	10
31	Quasi-Three-Dimensional Diffusion of Li ions in Li3FePO4CO3: First-Principles Calculations for Cathode Materials of Li-Ion Batteries. Applied Physics Express, 2013, 6, 115801.	2.4	12
32	Hybrid functional study on diffusion of silicate cathode material Li ₂ NiSiO ₄ . Journal of Physics: Conference Series, 2013, 454, 012061.	0.4	13
33	First-Principles Study of Charge Compensation in Olivine Positive. ECS Transactions, 2012, 41, 115-127.	0.5	4
34	Self-Organized Nanostructures and High Blocking Temperatures in MgO-Based d\$^{0}\$ Ferromagnets. Japanese Journal of Applied Physics, 2012, 51, 050201.	1.5	24
35	A New Insight into the Polaron–Li Complex Diffusion in Cathode Material LiFe\$_{1-y}\$Mn\$_{y}\$PO\$_{4}\$ for Li Ion Batteries. Applied Physics Express, 2012, 5, 045801.	2.4	16
36	Diffusion Mechanism of Polaron–Li Vacancy Complex in Cathode Material Li\$_{2}\$FeSiO\$_{4}\$. Applied Physics Express, 2012, 5, 125802.	2.4	22

#	Article	IF	Citations
37	Examining Service Quality and Customer Satisfaction in the Retail Banking Sector in Vietnam. Journal of Relationship Marketing, 2012, 11, 199-214.	4.4	27
38	First-principles study of the magnetic properties of nitrogen-doped alkaline earth metal oxides. Physica B: Condensed Matter, 2012, 407, 2875-2878.	2.7	21
39	First-Principles Study of Two-Phase Interface in LiFePO4. ECS Meeting Abstracts, 2012, , .	0.0	0
40	Self-Organized Nanostructures and High Blocking Temperatures in MgO-Based dOFerromagnets. Japanese Journal of Applied Physics, 2012, 51, 050201.	1.5	7
41	Vacancy formation and attractive interaction between vacancies and Chlorine in Chlorine-doped LiFePO <inf>4</inf> .,2011,,.		0
42	First principle prediction of half-metallic ferromagnetism above room temperature in half-heusler alloys. , 2010, , .		2
43	Half-Metallicity and High-T c Ferromagnetism in Si-containing Half-Heusler Alloys. Journal of Superconductivity and Novel Magnetism, 2010, 23, 79-82.	1.8	8
44	First Principle Study of Spinodal Decomposition Thermodynamics in Half-Heusler Alloy CoTi1â^x Fe x Sb. Journal of Superconductivity and Novel Magnetism, 2010, 23, 75-78.	1.8	6
45	First-principles theory of dilute magnetic semiconductors. Reviews of Modern Physics, 2010, 82, 1633-1690.	45.6	959
46	First Principle Materials Design of Half-Metallic Ferromagnetic Half-Heusler Alloys. IEEE Transactions on Magnetics, 2009, 45, 2663-2666.	2.1	7
47	First-principles material design and perspective on semiconductor spintronics materials. Physica B: Condensed Matter, 2009, 404, 5237-5243.	2.7	10
48	Structural and Magnetic Properties of Room Temperature Ferromagnets NiCrZ. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2589-2596.	0.4	11
49	New High- <i>T</i> _c Half-Heusler Ferromagnets NiMnZ (Z=Si, P, Ge, As). Journal of the Physical Society of Japan, 2008, 77, 014705.	1.6	28
50	Computational Nano-Materials Design for II-VI Compound Semiconductor-Based Spintronics. Journal of the Korean Physical Society, 2008, 53, 1-12.	0.7	2
51	Computational Nano-materials Design for Colossal Thermoelectric-cooling Power by Adiabatic Spin-Entropy Expansion in Nano-superstructures. Japanese Journal of Applied Physics, 2007, 46, L777-L779.	1.5	21
52	Computational nano-materials design for high-ferromagnetism in wide-gap magnetic semiconductors. Journal of Magnetism and Magnetic Materials, 2007, 310, 2070-2077.	2.3	68
53	Theory of ferromagnetic semiconductors. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 15-32.	1.8	195
54	Ab initio materials design for transparent-conducting-oxide-based new-functional materials. Applied Physics A: Materials Science and Processing, 2007, 89, 19-27.	2.3	35

#	Article	IF	CITATIONS
55	Pseudo-SIC study on the ferromagnetism induced by carbon in AO-based DMS (A = Mg, Ca, Ba, Sr). Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4131-4134.	0.8	3
56	Exchange Interaction and Tc in Alkaline-Earth-Metal-Oxide-Based DMS without Magnetic Impurities: First Principle Pseudo-SIC and Monte Carlo Calculation. Journal of the Physical Society of Japan, 2006, 75, 093705.	1.6	54
57	Dilute magnetic semiconductors based on wide bandgap SiO2 with and without transition metal elements. Solid State Communications, 2005, 136, 1-5.	1.9	35
58	Carrier Co-doping Method with Size Compensation to Enhance TC of Mn-doped Nitrides. Journal of Superconductivity and Novel Magnetism, 2005, 18 , $47-53$.	0.5	8
59	Ferromagnetism and Curie temperature of Vanadium-doped nitrides. Microscopy (Oxford, England), 2005, 54, i61-i64.	1.5	9
60	Enhancement ofTCby a carrier codoping method with size compensation for nitride-based ferromagnetic dilute magnetic semiconductors. Journal of Physics Condensed Matter, 2004, 16, S5705-S5709.	1.8	7
61	Cyclotron resonance of Wigner crystals on liquid helium. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 22, 783-786.	2.7	0
62	Materials Design of Transparent and Half-Metallic Ferromagnets of MgO, SrO and BaO without Magnetic Elements. Journal of the Physical Society of Japan, 2004, 73, 2952-2954.	1.6	121
63	Theory of cyclotron resonance of correlated electron systems. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 155-156.	2.7	2
64	Tc-Enhanced Codoping Method for GaAs-Based Dilute Magnetic Semiconductors. Japanese Journal of Applied Physics, 2003, 42, L888-L891.	1.5	17
65	Cyclotron Resonance of Wigner Crystal in Semiconductor Heterostructures. Journal of the Physical Society of Japan, 2003, 72, 1779-1783.	1.6	1
66	Effect of Impurity Correlation on the Density of States in Slightly Compensated Heavily Doped Semiconductors. Journal of the Physical Society of Japan, 1997, 66, 140-148.	1.6	3
67	On the electron mobility in slightly compensated heavily doped GaAs at low temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 182, 125-129.	2.1	7
68	DFT Study on Adsorption of Volatile Organic Compounds on Silicene. , 0, , .		0