Giuseppe Pignataro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884500/publications.pdf

Version: 2024-02-01

109321 114465 4,329 111 35 63 citations g-index h-index papers 117 117 117 5036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pharmacology of Brain Na+/Ca2+ Exchanger: From Molecular Biology to Therapeutic Perspectives. Pharmacological Reviews, 2004, 56, 633-654.	16.0	283
2	Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain, 2006, 130, 151-158.	7.6	246
3	Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicology Letters, 2003, 139, 125-133.	0.8	236
4	Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Current Opinion in Pharmacology, 2008, 8, 25-32.	3.5	214
5	<i>In Vivo</i> and <i>In Vitro</i> Characterization of a Novel Neuroprotective Strategy for Stroke: Ischemic Postconditioning. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 232-241.	4.3	195
6	Rhythm-specific modulation of the sensorimotor network in drug-naÃ⁻ve patients with Parkinson's disease by levodopa. Brain, 2013, 136, 710-725.	7.6	178
7	Two Sodium/Calcium Exchanger Gene Products, NCX1 and NCX3, Play a Major Role in the Development of Permanent Focal Cerebral Ischemia. Stroke, 2004, 35, 2566-2570.	2.0	155
8	Ischemic Preconditioning Regulates Expression of microRNAs and a Predicted Target, MeCP2, in Mouse Cortex. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 744-756.	4.3	151
9	Targeted Disruption of Na ⁺ /Ca ²⁺ Exchanger 3 (NCX3) Gene Leads to a Worsening of Ischemic Brain Damage. Journal of Neuroscience, 2008, 28, 1179-1184.	3.6	125
10	Transgenic Overexpression of Adenosine Kinase Aggravates Cell Death in Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1-5.	4. 3	101
11	Evidence for a protective role played by the Na+/Ca2+ exchanger in cerebral ischemia induced by middle cerebral artery occlusion in male rats. Neuropharmacology, 2004, 46, 439-448.	4.1	94
12	Postâ€ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS Journal, 2009, 276, 46-57.	4.7	90
13	Permanent Focal Brain Ischemia Induces Isoform-Dependent Changes in the Pattern of Na+/Ca2+ Exchanger Gene Expression in the Ischemic Core, Periinfarct Area, and Intact Brain Regions. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 502-517.	4.3	83
14	Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. Neurobiology of Disease, 2013, 49, 177-189.	4.4	83
15	Downregulation of Hippocampal Adenosine Kinase after Focal Ischemia as Potential Endogenous Neuroprotective Mechanism. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 17-23.	4.3	80
16	lonic Transporter Activity in Astrocytes, Microglia, and Oligodendrocytes During Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 969-982.	4.3	79
17	Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. Journal of Neuroscience, 2015, 35, 7332-7348.	3.6	78
18	Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors: current and emerging therapeutic options. Current Opinion in Pharmacology, 2011, 11, 378-394.	3.5	73

#	Article	IF	CITATIONS
19	HIFâ€1α reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion. Journal of Neurochemistry, 2004, 90, 368-378.	3.9	72
20	NCX1 Is a Novel Target Gene for Hypoxia-Inducible Factor-1 in Ischemic Brain Preconditioning. Stroke, 2011, 42, 754-763.	2.0	67
21	MicroRNA-103-1 Selectively Downregulates Brain NCX1 and Its Inhibition by Anti-miRNA Ameliorates Stroke Damage and Neurological Deficits. Molecular Therapy, 2014, 22, 1829-1838.	8.2	63
22	Alcohol increases spontaneous BOLD signal fluctuations in the visual network. NeuroImage, 2010, 53, 534-543.	4.2	59
23	NCX1 and NCX3: Two new effectors of delayed preconditioning in brain ischemia. Neurobiology of Disease, 2012, 45, 616-623.	4.4	56
24	Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Scientific Reports, 2017, 7, 9388.	3.3	56
25	The NCX3 Isoform of the Na+/Ca2+ Exchanger Contributes to Neuroprotection Elicited by Ischemic Postconditioning. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 362-370.	4.3	52
26	nNOS and p-ERK involvement in the neuroprotection exerted by remote postconditioning in rats subjected to transient middle cerebral artery occlusion. Neurobiology of Disease, 2013, 54, 105-114.	4.4	47
27	ORAI1/STIM1 Interaction Intervenes in Stroke and in Neuroprotection Induced by Ischemic Preconditioning Through Store-Operated Calcium Entry. Stroke, 2019, 50, 1240-1249.	2.0	47
28	Neuroprotection in Ischemic Mouse Brain Induced by Stem Cell-Derived Brain Implants. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 919-927.	4.3	43
29	Glial Na ⁺ â€dependent ion transporters in pathophysiological conditions. Glia, 2016, 64, 1677-1697.	4.9	43
30	Neurobiology of coronaviruses: Potential relevance for COVID-19. Neurobiology of Disease, 2020, 143, 105007.	4.4	42
31	ncx1, ncx2, and ncx3 Gene Product Expression and Function in Neuronal Anoxia and Brain Ischemia. Annals of the New York Academy of Sciences, 2007, 1099, 413-426.	3.8	41
32	Ionic Homeostasis Maintenance in ALS: Focus on New Therapeutic Targets. Frontiers in Neuroscience, 2018, 12, 510.	2.8	40
33	NCX1 is a new rest target gene: Role in cerebral ischemia. Neurobiology of Disease, 2013, 50, 76-85.	4.4	39
34	Neurounina-1, a Novel Compound That Increases Na ⁺ /Ca ²⁺ Exchanger Activity, Effectively Protects against Stroke Damage. Molecular Pharmacology, 2013, 83, 142-156.	2.3	39
35	NCX as a Key Player in the Neuroprotection Exerted by Ischemic Preconditioning and Postconditioning. Advances in Experimental Medicine and Biology, 2013, 961, 223-240.	1.6	38
36	A Critical Role for the Potassium-Dependent Sodium–Calcium Exchanger NCKX2 in Protection against Focal Ischemic Brain Damage. Journal of Neuroscience, 2008, 28, 2053-2063.	3 . 6	37

3

#	Article	IF	Citations
37	Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells. Journal of Neurochemistry, 2005, 95, 1321-1331.	3.9	35
38	Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with 18F-DPA-714 and micro-PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1348-1359.	6.4	33
39	Does Na+/Ca2+ Exchanger, NCX, Represent a New Druggable Target in Stroke Intervention?. Translational Stroke Research, 2014, 5, 145-155.	4.2	32
40	Neuronal NCX1 overexpression induces stroke resistance while knockout induces vulnerability via Akt. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1790-1803.	4.3	31
41	ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. International Journal of Physiology, Pathophysiology and Pharmacology, 2011, 3, 1-8.	0.8	31
42	Ionic homeostasis in brain conditioning. Frontiers in Neuroscience, 2015, 9, 277.	2.8	28
43	Glutamate-Independent Calcium Toxicity. Stroke, 2007, 38, 661-664.	2.0	27
44	Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype. Cell Death and Disease, 2014, 5, e1331-e1331.	6.3	27
45	Sumoylation of LYS590 of NCX3 f-Loop by SUMO1 Participates in Brain Neuroprotection Induced by Ischemic Preconditioning. Stroke, 2016, 47, 1085-1093.	2.0	27
46	Preconditioning, induced by sub-toxic dose of the neurotoxin L-BMAA, delays ALS progression in mice and prevents Na+/Ca2+ exchanger 3 downregulation. Cell Death and Disease, 2018, 9, 206.	6.3	26
47	Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke. International Journal of Molecular Sciences, 2018, 19, 172.	4.1	26
48	Protective effects of quercetin on rat pial microvascular changes during transient bilateral common carotid artery occlusion and reperfusion. Frontiers in Physiology, 2012, 3, 32.	2.8	25
49	Is coeliac disease a confounding factor in the diagnosis of NASH? Reply. Gut, 2001, 49, 596-596.	12.1	24
50	The 2-oxopyrrolidinacetamide piracetam reduces infarct brain volume induced by permanent middle cerebral artery occlusion in male rats. Neuropharmacology, 2002, 43, 427-433.	4.1	24
51	Neuroprotective Effect of VEGF-Mimetic Peptide QK in Experimental Brain Ischemia Induced in Rat by Middle Cerebral Artery Occlusion. ACS Chemical Neuroscience, 2015, 6, 1517-1525.	3.5	24
52	Neuroprotective coordination of cell mitophagy by the ATPase Inhibitory Factor 1. Pharmacological Research, 2016, 103, 56-68.	7.1	23
53	Acute and long-term NCX activation reduces brain injury and restores behavioral functions in mice subjected to neonatal brain ischemia. Neuropharmacology, 2018, 135, 180-191.	4.1	23
54	Anti-miR-223-5p Ameliorates Ischemic Damage and Improves Neurological Function by Preventing NCKX2 Downregulation after Ischemia in Rats. Molecular Therapy - Nucleic Acids, 2019, 18, 1063-1071.	5.1	23

#	Article	IF	CITATIONS
55	Antithrombin Reduces Ischemic Volume, Ameliorates Neurologic Deficits, and Prolongs Animal Survival in Both Transient and Permanent Focal Ischemia. Stroke, 2007, 38, 3272-3279.	2.0	22
56	Genetic ablation of homeodomain-interacting protein kinase 2 selectively induces apoptosis of cerebellar Purkinje cells during adulthood and generates an ataxic-like phenotype. Cell Death and Disease, 2015, 6, e2004-e2004.	6.3	21
57	NCX1 Exchanger Cooperates with Calretinin to Confer Preconditioning-Induced Tolerance Against Cerebral Ischemia in the Striatum. Molecular Neurobiology, 2016, 53, 1365-1376.	4.0	21
58	miR-206 Reduces the Severity of Motor Neuron Degeneration in the Facial Nuclei of the Brainstem in a Mouse Model of SMA. Molecular Therapy, 2020, 28, 1154-1166.	8.2	21
59	Rat Pial Microvascular Responses to Transient Bilateral Common Carotid Artery Occlusion and Reperfusion: Quercetin's Mechanism of Action. Frontiers in Physiology, 2012, 3, 99.	2.8	20
60	Genetically Modified Mice as a Strategy to Unravel the Role Played by the Na+/Ca2+ Exchanger in Brain Ischemia and in Spatial Learning and Memory Deficits. Advances in Experimental Medicine and Biology, 2013, 961, 213-222.	1.6	19
61	Na ⁺ /Ca ²⁺ Exchanger in Na ⁺ Effluxâ€Ca ²⁺ Influx Mode of Operation Exerts a Neuroprotective Role in Cellular Models of <i>in Vitro</i> Anoxia and <i>in Vivo</i> Cerebral Ischemia. Annals of the New York Academy of Sciences, 2002, 976, 408-412.	3 . 8	18
62	Remote postconditioning ameliorates stroke damage by preventing let-7a and miR-143 up-regulation. Theranostics, 2020, 10, 12174-12188.	10.0	18
63	In vivo imaging of CNS microglial activation/macrophage infiltration with combined [18F]DPA-714-PET and SPIO-MRI in a mouse model of relapsing remitting experimental autoimmune encephalomyelitis. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 40-52.	6.4	17
64	Pharmacological Characterization of the Newly Synthesized 5-Amino- <i>N</i> -butyl-2-(4-ethoxyphenoxy)-benzamide Hydrochloride (BED) as a Potent NCX3 Inhibitor That Worsens Anoxic Injury in Cortical Neurons, Organotypic Hippocampal Cultures, and Ischemic Brain. ACS Chemical Neuroscience, 2015, 6, 1361-1370.	3.5	16
65	Models and methods for conditioning the ischemic brain. Journal of Neuroscience Methods, 2018, 310, 63-74.	2.5	16
66	Transcriptional Regulation of ncx1 Gene in the Brain. Advances in Experimental Medicine and Biology, 2013, 961, 137-145.	1.6	14
67	miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Frontiers in Pediatrics, 2021, 9, 611112.	1.9	13
68	HDAC4 and HDAC5 form a complex with DREAM that epigenetically down-regulates NCX3 gene and its pharmacological inhibition reduces neuronal stroke damage. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2081-2097.	4.3	12
69	New perspectives for selective NCX activators in neurodegenerative diseases. Cell Calcium, 2020, 87, 102170.	2.4	11
70	Unfair credit allocations. Small Business Economics, 2013, 41, 241-251.	6.7	10
71	Defective Neuropeptide Processing and Ischemic Brain Injury: A Study on Proprotein Convertase 2 and its Substrate Neuropeptide in Ischemic Brains. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 698-706.	4.3	9
72	The effects of environmental quality misperception on investments and regulation. International Journal of Production Economics, 2020, 225, 107579.	8.9	9

#	Article	IF	Citations
73	Sodium/calcium exchanger as main effector of endogenous neuroprotection elicited by ischemic tolerance. Cell Calcium, 2020, 87, 102183.	2.4	9
74	The hypoxia sensitive metal transcription factor MTF-1 activates NCX1 brain promoter and participates in remote postconditioning neuroprotection in stroke. Cell Death and Disease, 2021, 12, 423.	6.3	9
75	Prolonged NCX activation prevents SOD1 accumulation, reduces neuroinflammation, ameliorates motor behavior and prolongs survival in a ALS mouse model. Neurobiology of Disease, 2021, 159, 105480.	4.4	8
76	Ischemic Preconditioning Modulates the Peripheral Innate Immune System to Promote Anti-Inflammatory and Protective Responses in Mice Subjected to Focal Cerebral Ischemia. Frontiers in Immunology, 2022, 13, 825834.	4.8	8
77	Involvement of the Potassium-Dependent Sodium/Calcium Exchanger Gene Product NCKX2 in the Brain Insult Induced by Permanent Focal Cerebral Ischemia. Annals of the New York Academy of Sciences, 2007, 1099, 486-489, Multicentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS):	3.8	7
78	mouse from the Italian Stroke Organization (ISO) Basic Science networkMulticentre translational Trial of Remote Ischaemic Conditioning in Acute Ischaemic Stroke (TRICS): protocol of multicentre, parallel group, randomised, preclinical trial in female and male rat and mouse from. BMJ Open Science,	1.7	7
79	2020, 44, e100063. Hemorrhagic Stroke Induces a Time-Dependent Upregulation of miR-150-5p and miR-181b-5p in the Bloodstream. Frontiers in Neurology, 2021, 12, 736474.	2.4	7
80	Emerging Role of microRNAs in Stroke Protection Elicited by Remote Postconditioning. Frontiers in Neurology, 2021, 12, 748709.	2.4	7
81	New Insights into the Structure–Activity Relationship and Neuroprotective Profile of Benzodiazepinone Derivatives of Neurounina-1 as Modulators of the Na ⁺ /Ca ²⁺ Exchanger Isoforms. Journal of Medicinal Chemistry, 2021, 64, 17901-17919.	6.4	6
82	Effects of bone marrow mesenchymal stem cells (BM-MSCs) on rat pial microvascular remodeling after transient middle cerebral artery occlusion. Frontiers in Cellular Neuroscience, 2015, 9, 329.	3.7	5
83	A graph-based approach to inequality assessment. Physica A: Statistical Mechanics and Its Applications, 2016, 455, 65-78.	2.6	5
84	Development, Validation of LC-MS/MS Method and Determination of Pharmacokinetic Parameters of the Stroke Neuroprotectant Neurounina-1 in Beagle Dog Plasma After Intravenous Administration. Frontiers in Pharmacology, 2019, 10, 432.	3.5	5
85	Conjunctival instillation of plasminogen eliminates ocular lesion in B6.129P2-Plgtm1Jld transgenic mice, a model of ligneous conjunctivitis. Pharmacological Research, 2013, 74, 45-48.	7.1	4
86	GATA3 (GATA-Binding Protein 3)/KMT2A (Lysine-Methyltransferase-2A) Complex by Increasing H3K4-3me (Trimethylated Lysine-4 of Histone-3) Upregulates NCX3 (Na ⁺ -Ca ²⁺ Exchanger) Tj E 3680-3691.	TQ ₉ 0,000	rgBŢ /Overloc
87	IN BRAIN POST-ISCHEMIC PLASTICITY, Na+/Ca2+ EXCHANGER 1 AND Ascl1 INTERVENE IN MICROGLIA-DEPENDENT CONVERSION OF ASTROCYTES INTO NEURONAL LINEAGE. Cell Calcium, 2022, 105, 102608.	2.4	4
88	K+-Dependent Na+/Ca2+ Exchanger Isoform 2, Nckx2, Takes Part in the Neuroprotection Elicited by Ischemic Preconditioning in Brain Ischemia. International Journal of Molecular Sciences, 2022, 23, 7128.	4.1	4
89	Preconditioning in hypoxic-ischemic neonate mice triggers Na+-Ca2+ exchanger-dependent neurogenesis. Cell Death Discovery, 2022, 8, .	4.7	4
90	Sumoylation of sodium/calcium exchanger in brain ischemia and ischemic preconditioning. Cell Calcium, 2020, 87, 102195.	2.4	3

#	Article	IF	Citations
91	Synthesis and Characterization of Novel Mono- and Bis-Guanyl Hydrazones as Potent and Selective ASIC1 Inhibitors Able to Reduce Brain Ischemic Insult. Journal of Medicinal Chemistry, 2021, 64, 8333-8353.	6.4	3
92	The Na + /Ca 2+ Exchanger: A Target for Therapeutic Intervention in Cerebral Ischemia., 2009,, 65-87.		3
93	Pool size and the sustainability of optimal risk-sharing agreements. Theory and Decision, 2017, 82, 273-303.	1.0	2
94	On the social (sub)optimality of divisionalization under product differentiation. Journal of Economics/ Zeitschrift Fur Nationalokonomie, 2019, 128, 225-238.	0.7	2
95	Neurological risks and benefits of cytokineâ€based treatments in coronavirus disease 2019: from preclinical to clinical evidence. British Journal of Pharmacology, 2021, , .	5.4	2
96	Editorial: Mechanisms of Innate Neuroprotection. Frontiers in Neurology, 2016, 7, 80.	2.4	1
97	Learning, proximity and voting: theory and empirical evidence from nuclear referenda. Social Choice and Welfare, 2020, 55, 117-147.	0.8	1
98	Clinical Trials with Drugs Targeting Ionic Channels, Antiporters, and Pumps in Ischemic Stroke. , 2009, , 225-249.		1
99	Acid-Sensing Ion Channels (ASICs): New Targets in Stroke Treatment. , 2009, , 153-173.		1
100	Why have Ionotropic and Metabotropic Glutamate Antagonists Failed in Stroke Therapy?., 2009, , 13-25.		1
101	Competition among coalitions in a cournot industry: a validation of the porter hypothesis. Japanese Economic Review, 2022, 73, 679-713.	1.3	1
102	S.25.02 Ion channels and exhangers as potential targets for stroke therapy. European Neuropsychopharmacology, 2010, 20, S201.	0.7	0
103	Use of CMOS Image Sensor for early detection of ischemic and haemorrhagic stroke. , 2021, , .		0
104	NKCC-1 Sodium-Potassium-Chloride Co-Transporter 1., 2007,, 1.		0
105	NKCC-X Sodium-Potassium-Chloride Co-Transporter X. , 2007, , 1.		0
106	Surgical Methods to Induce Brain Preconditioning. , 2013, , 225-240.		0
107	microRNA 103â€1 exerts a neuroprotective effect in stroke by enhancing ncx1 expression in the brain (654.1). FASEB Journal, 2014, 28, 654.1.	0.5	0
108	Na+/Ca2+ Exchangers. , 2020, , 1-11.		0

#	Article	IF	CITATIONS
109	Na+/Ca2+ Exchangers. , 2021, , 1037-1047.		0
110	Enhanced fluorescence detection of miRNAs using one-dimensional photonic crystal-based biochips. , 2022, , .		0
111	Inequality assessment in a dynamic framework with heterogenous agents. Economia Politica, 0, , .	2.2	0