
Yuhang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Projection of future wildfire emissions in western USA under climate change: contributions from changes in wildfire, fuel loading and fuel moisture. International Journal of Wildland Fire, 2022, 31, 1-13.	2.4	10
2	Characterizing the distinct modulation of future emissions on summer ozone concentrations between urban and rural areas over China. Science of the Total Environment, 2022, 820, 153324.	8.0	13
3	Collocated Measurements of Lightâ€Absorbing Organic Carbon in PM _{2.5} : Observation Uncertainty and Organic Tracerâ€Based Source Apportionment. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
4	Ambient observations indicating an increasing effectiveness of ammonia control in wintertime PM2.5 reduction in Central China. Science of the Total Environment, 2022, 824, 153708.	8.0	9
5	The striking effect of vertical mixing in the planetary boundary layer on new particle formation in the Yangtze River Delta. Science of the Total Environment, 2022, 829, 154607.	8.0	11
6	Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience, 2022, 15, 349-355.	12.9	37
7	The Impact of Meteorology and Emissions on Surface Ozone in Shandong Province, China, during Summer 2014–2019. International Journal of Environmental Research and Public Health, 2022, 19, 6758.	2.6	3
8	Arctic sea ice modulation of summertime heatwaves over western North America in recent decades. Environmental Research Letters, 2022, 17, 074015.	5.2	4
9	Evidence for Large Amounts of Brown Carbonaceous Tarballs in the Himalayan Atmosphere. Environmental Science and Technology Letters, 2021, 8, 16-23.	8.7	29
10	Global Wildfire Plumeâ€Rise Data Set and Parameterizations for Climate Model Applications. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033085.	3.3	9
11	Explicit modeling of isoprene chemical processing in polluted air masses in suburban areas of the Yangtze River Delta region: radical cycling and formation of ozone and formaldehyde. Atmospheric Chemistry and Physics, 2021, 21, 5905-5917.	4.9	20
12	Seasonal Variations of Carbonyls and Their Contributions to the Ozone Formation in Urban Atmosphere of Taiyuan, China. Atmosphere, 2021, 12, 510.	2.3	8
13	A dynamical pathway bridging African biomass burning and Asian summer monsoon. Climate Dynamics, 2021, 57, 1993-2004.	3.8	0
14	Recommendations for HCHO and SO2 Retrieval Settings from MAX-DOAS Observations under Different Meteorological Conditions. Remote Sensing, 2021, 13, 2244.	4.0	5
15	Optimal estimation of initial concentrations and emission sources with 4D-Var for air pollution prediction in a 2D transport model. Science of the Total Environment, 2021, 773, 145580.	8.0	5
16	Quantifying the Impacts of COVID-19 Lockdown and Spring Festival on Air Quality over Yangtze River Delta Region. Atmosphere, 2021, 12, 735.	2.3	6
17	Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer. Atmospheric Measurement Techniques, 2021, 14, 4053-4068.	3.1	4
18	Comprehensive evaluations of diurnal NO ₂ measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NO _{<i>x</i>} emissions. Atmospheric Chemistry and Physics, 2021, 21, 11133-11160.	4.9	7

#	Article	IF	CITATIONS
19	Gas–particle partitioning of polyol tracers at a suburban site in Nanjing, east China: increased partitioning to the particle phase. Atmospheric Chemistry and Physics, 2021, 21, 12141-12153.	4.9	7
20	Formation mechanism of HCHO pollution in the suburban Yangtze River Delta region, China: A box model study and policy implementations. Atmospheric Environment, 2021, 267, 118755.	4.1	12
21	Summertime Clean-Background Ozone Concentrations Derived from Ozone Precursor Relationships are Lower than Previous Estimates in the Southeast United States. Environmental Science & Technology, 2021, 55, 12852-12861.	10.0	2
22	Enhancement of ozone formation by increased vehicles emission and reduced coal combustion emission in Taiyuan, a traditional industrial city in northern China. Atmospheric Environment, 2021, 267, 118759.	4.1	7
23	Chemical Production of Oxygenated Volatile Organic Compounds Strongly Enhances Boundary-Layer Oxidation Chemistry and Ozone Production. Environmental Science & Technology, 2021, 55, 13718-13727.	10.0	31
24	Photochemistry of Volatile Organic Compounds in the Yellow River Delta, China: Formation of O ₃ and Peroxyacyl Nitrates. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035296.	3.3	11
25	Formation and dissipation dynamics of the Asian tropopause aerosol layer. Environmental Research Letters, 2021, 16, 014015.	5.2	5
26	A modeling study of the regional representativeness of surface ozone variation at the WMO/GAW background stations in China. Atmospheric Environment, 2020, 242, 117672.	4.1	6
27	Global Wildfire Outlook Forecast with Neural Networks. Remote Sensing, 2020, 12, 2246.	4.0	10
28	Investigating the Impacts of the COVID-19 Lockdown on Trace Gases Using Ground-Based MAX-DOAS Observations in Nanjing, China. Remote Sensing, 2020, 12, 3939.	4.0	15
29	Extending Ozoneâ€Precursor Relationships in China From Peak Concentration to Peak Time. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033670.	3.3	12
30	Validation of SAGE III/ISS Solar Occultation Ozone Products With Correlative Satellite and Groundâ€Based Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032430.	3.3	24
31	A three-year investigation of metals in the atmospheric wet deposition of a basin region, north China: Pollution characteristics and source apportionment. Atmospheric Pollution Research, 2020, 11, 793-802.	3.8	9
32	Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. Geophysical Research Letters, 2020, 47, e2020GL088747.	4.0	61
33	Modeling the global radiative effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black carbon. Atmospheric Chemistry and Physics, 2020, 20, 1901-1920.	4.9	70
34	Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline. Atmospheric Chemistry and Physics, 2020, 20, 4999-5017.	4.9	20
35	The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai. Atmospheric Environment, 2020, 232, 117511.	4.1	53
36	Characteristics, sources and regional inter-transport of ambient volatile organic compounds in a city located downwind of several large coke production bases in China. Atmospheric Environment, 2020, 233, 117573.	4.1	17

#	Article	IF	CITATIONS
37	No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014. Environmental Science & Technology, 2020, 54, 5973-5979.	10.0	67
38	NOx Emission Reduction and Recovery during COVID-19 in East China. Atmosphere, 2020, 11, 433.	2.3	160
39	Measurements of light-absorbing impurities in snow over four glaciers on the Tibetan Plateau. Atmospheric Research, 2020, 243, 105002.	4.1	7
40	Observation Constrained Aromatic Emissions in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031815.	3.3	13
41	Using CESM-RESFire to understand climate–fire–ecosystem interactions and the implications for decadal climate variability. Atmospheric Chemistry and Physics, 2020, 20, 995-1020.	4.9	31
42	AÂvacuum ultraviolet ion source (VUV-IS) for iodide–chemical ionization mass spectrometry: a substitute for radioactive ion sources. Atmospheric Measurement Techniques, 2020, 13, 3683-3696.	3.1	14
43	lsoprene Mixing Ratios Measured at Twenty Sites in China During 2012–2014: Comparison With Model Simulation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033523.	3.3	14
44	Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of the Total Environment, 2019, 646, 564-572.	8.0	46
45	Vertical distribution of the Asian tropopause aerosols detected by CALIPSO. Environmental Pollution, 2019, 253, 207-220.	7.5	11
46	Comment on "Insignificant effect of climate change on winter haze pollution in Beijing―by Shen et al. (2018). Atmospheric Chemistry and Physics, 2019, 19, 8563-8568.	4.9	0
47	Significant impact of heterogeneous reactions of reactive chlorine species on summertime atmospheric ozone and free-radical formation in north China. Science of the Total Environment, 2019, 693, 133580.	8.0	29
48	High cancer risk from inhalation exposure to PAHs in Fenhe Plain in winter: A particulate size distribution-based study. Atmospheric Environment, 2019, 216, 116924.	4.1	10
49	Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 2019, 19, 12195-12207.	4.9	95
50	Using MODIS derived aerosol optical depth to estimate ground-level PM2.5 concentrations over Turkey. Atmospheric Pollution Research, 2019, 10, 1565-1576.	3.8	36
51	Contrasting Post-Fire Dynamics between Africa and South America based on MODIS Observations. Remote Sensing, 2019, 11, 1074.	4.0	7
52	Dependence of Summertime Surface Ozone on NO _{<i>x</i>} and VOC Emissions Over the United States: Peak Time and Value. Geophysical Research Letters, 2019, 46, 3540-3550.	4.0	20
53	Impact of the Eurasian Teleconnection on the Interannual Variability of Haze-Fog in Northern China in January. Atmosphere, 2019, 10, 113.	2.3	18
54	Development of a REgionâ€Specific Ecosystem Feedback Fire (RESFire) Model in the Community Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 417-445.	3.8	20

#	Article	IF	CITATIONS
55	Impacts of meteorology and emissions on summertime surface ozone increases over central eastern China between 2003 and 2015. Atmospheric Chemistry and Physics, 2019, 19, 1455-1469.	4.9	85
56	Initial Cost Barrier of Ammonia Control in Central China. Geophysical Research Letters, 2019, 46, 14175-14184.	4.0	12
57	Inferring the anthropogenic NO _{<i>x</i>} emission trend over the United States during 2003–2017 from satellite observations: was there a flattening of the emission trend after the Great Recession?. Atmospheric Chemistry and Physics. 2019. 19. 15339-15352.	4.9	13
58	Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment. Atmospheric Environment, 2018, 180, 226-233.	4.1	8
59	Impacts of the Degradation of 2,3,3,3-Tetrafluoropropene into Trifluoroacetic Acid from Its Application in Automobile Air Conditioners in China, the United States, and Europe. Environmental Science & Technology, 2018, 52, 2819-2826.	10.0	35
60	Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles. Atmospheric Chemistry and Physics, 2018, 18, 31-47.	4.9	13
61	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	4.9	42
62	Evidence of heterogeneous HONO formation from aerosols and the regional photochemical impact of this HONO source. Environmental Research Letters, 2018, 13, 114002.	5.2	26
63	Major forest increase on the Loess Plateau, China (2001–2016). Land Degradation and Development, 2018, 29, 4080-4091.	3.9	34
64	Estimator of Surface Ozone Using Formaldehyde and Carbon Monoxide Concentrations Over the Eastern United States in Summer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7642-7655.	3.3	11
65	Comparing OMI-based and EPA AQS in situ NO ₂ trends: towards understanding surface NO _{<i>x</i>} emission changes. Atmospheric Measurement Techniques, 2018, 11, 3955-3967.	3.1	41
66	Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. Science of the Total Environment, 2017, 580, 283-296.	8.0	93
67	Derivation of Hydroperoxyl Radical Levels at an Urban Site via Measurement of Pernitric Acid by Iodide Chemical Ionization Mass Spectrometry. Environmental Science & Technology, 2017, 51, 3355-3363.	10.0	2
68	Development of a selfâ€consistent lightning NO <i>_x</i> simulation in largeâ€scale 3â€D models. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3141-3154.	3.3	10
69	Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nature Geoscience, 2017, 10, 486-489.	12.9	168
70	Source apportionment and toxicity of atmospheric polycyclic aromatic hydrocarbons by PMF: Quantifying the influence of coal usage in Taiyuan, China. Atmospheric Research, 2017, 193, 50-59.	4.1	47
71	Arctic sea ice, Eurasia snow, and extreme winter haze in China. Science Advances, 2017, 3, e1602751.	10.3	181
72	Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in central China. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3672-3685.	3.3	29

#	Article	IF	CITATIONS
73	Diagnosing Tibetan pollutant sources via volatile organic compound observations. Atmospheric Environment, 2017, 166, 244-254.	4.1	18
74	High Levels of Daytime Molecular Chlorine and Nitryl Chloride at a Rural Site on the North China Plain. Environmental Science & Technology, 2017, 51, 9588-9595.	10.0	78
75	Quantifying the relationship between extreme air pollution events and extreme weather events. Atmospheric Research, 2017, 188, 64-79.	4.1	88
76	Large biogenic contribution to boundary layer O ₃ O regression slope in summer. Geophysical Research Letters, 2017, 44, 7061-7068.	4.0	14
77	Enhanced trans-Himalaya pollution transport to the Tibetan Plateau by cut-off low systems. Atmospheric Chemistry and Physics, 2017, 17, 3083-3095.	4.9	38
78	Inverse modelling of NO _{<i>x</i>} emissions over eastern China: uncertainties due to chemical non-linearity. Atmospheric Measurement Techniques, 2016, 9, 5193-5201.	3.1	22
79	Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 2016, 54, 866-929.	23.0	591
80	Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10025-10030.	7.1	87
81	Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVERâ€AQ 2011 observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1922-1934.	3.3	38
82	Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5. Atmospheric Chemistry and Physics, 2016, 16, 14805-14824.	4.9	57
83	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	3.3	93
84	Large fire emissions in summer over the southeastern US: Satellite measurements and modeling analysis. Atmospheric Environment, 2016, 127, 213-220.	4.1	4
85	Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Science of the Total Environment, 2016, 541, 200-209.	8.0	199
86	A growing importance of large fires in conterminous United States during 1984–2012. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2625-2640.	3.0	30
87	Centuryâ€scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance. Global Biogeochemical Cycles, 2015, 29, 1549-1566.	4.9	21
88	Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI. Atmospheric Chemistry and Physics, 2015, 15, 10839-10856.	4.9	45
89	A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China. Atmospheric Chemistry and Physics, 2015, 15, 11919-11929.	4.9	69
90	Characteristics and reactivity of volatile organic compounds from non-coal emission sources in China. Atmospheric Environment, 2015, 115, 153-162.	4.1	52

#	Article	IF	CITATIONS
91	Coke workers' exposure to volatile organic compounds in northern China: a case study in Shanxi Province. Environmental Monitoring and Assessment, 2015, 187, 359.	2.7	17
92	High levels of molecular chlorine in the Arctic atmosphere. Nature Geoscience, 2014, 7, 91-94.	12.9	105
93	Evidence of Aerosols as a Media for Rapid Daytime HONO Production over China. Environmental Science & Technology, 2014, 48, 14386-14391.	10.0	79
94	Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 249-263.	3.0	56
95	Anthropogenic emissions of NO <i>_x</i> over China: Reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 7732-7740.	3.3	45
96	Influence of climate variability on near-surface ozone depletion events in the Arctic spring. Geophysical Research Letters, 2014, 41, 2582-2589.	4.0	6
97	Surface and free tropospheric sources of methanesulfonic acid over the tropical Pacific Ocean. Geophysical Research Letters, 2014, 41, 5239-5245.	4.0	10
98	Global distribution and trends of tropospheric ozone: An observation-based review. Elementa, 2014, 2,	3.2	365
99	Statistical downscaling of an air quality model using Fitted Empirical Orthogonal Functions. Atmospheric Environment, 2013, 81, 1-10.	4.1	16
100	Reduction in NO _{<i>x</i>} Emission Trends over China: Regional and Seasonal Variations. Environmental Science & Technology, 2013, 47, 12912-12919.	10.0	97
101	Exploring the missing source of glyoxal (CHOCHO) over China. Geophysical Research Letters, 2012, 39, .	4.0	82
102	Characterization of soluble bromide measurements and a case study of BrO observations during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 1327-1338.	4.9	27
103	Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations. Atmospheric Chemistry and Physics, 2012, 12, 9909-9922.	4.9	42
104	Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC. Atmospheric Chemistry and Physics, 2012, 12, 1255-1285.	4.9	63
105	Summertime photochemistry during CAREBeijing-2007: RO _x budgets and O ₃ formation. Atmospheric Chemistry and Physics, 2012, 12, 7737-7752.	4.9	150
106	Observations of inorganic bromine (HOBr, BrO, and Br ₂) speciation at Barrow, Alaska, in spring 2009. Journal of Geophysical Research, 2012, 117, .	3.3	71
107	NO _{<i>x</i>} Emission Reduction and its Effects on Ozone during the 2008 Olympic Games. Environmental Science & amp; Technology, 2011, 45, 6404-6410.	10.0	51
108	Integration of remote sensing data and surface observations to estimate the impact of the Russian wildfires over Europe and Asia during August 2010. Biogeosciences, 2011, 8, 3771-3791.	3.3	35

#	Article	IF	CITATIONS
109	Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution. Atmospheric Chemistry and Physics, 2011, 11, 3511-3525.	4.9	169
110	Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 13325-13337.	4.9	106
111	Nationwide summer peaks of OC/EC ratios in the contiguous United States. Atmospheric Environment, 2011, 45, 578-586.	4.1	49
112	Diagnosis of an underestimation of summertime sulfate using the Community Multiscale Air Quality model. Atmospheric Environment, 2011, 45, 5119-5130.	4.1	22
113	Sources, transport, and sinks of SO2 over the equatorial Pacific during the Pacific Atmospheric Sulfur Experiment. Journal of Atmospheric Chemistry, 2011, 68, 27-53.	3.2	21
114	Pacific Atmospheric Sulfur Experiment (PASE): dynamics and chemistry of the south Pacific tropical trade wind regime. Journal of Atmospheric Chemistry, 2011, 68, 5-25.	3.2	13
115	Trans-Pacific transport of Asian dust and CO: accumulation of biomass burning CO in the subtropics and dipole structure of transport. Atmospheric Chemistry and Physics, 2010, 10, 3297-3308.	4.9	21
116	Source attribution and interannual variability of Arctic pollution in spring constrained by aircraft (ARCTAS, ARCPAC) and satellite (AIRS) observations of carbon monoxide. Atmospheric Chemistry and Physics, 2010, 10, 977-996.	4.9	189
117	Understanding the contributions of anthropogenic and biogenic sources to CO enhancements and outflow observed over North America and the western Atlantic Ocean by TES and MOPITT. Atmospheric Environment, 2010, 44, 2033-2042.	4.1	12
118	Atmospheric chemistry results from the ANTCI 2005 Antarctic plateau airborne study. Journal of Geophysical Research, 2010, 115, .	3.3	35
119	A study of tropospheric ozone column enhancements over North America using satellite data and a global chemical transport model. Journal of Geophysical Research, 2010, 115, .	3.3	11
120	Impact of East Asian summer monsoon on the air quality over China: View from space. Journal of Geophysical Research, 2010, 115, .	3.3	88
121	Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes. Journal of Geophysical Research, 2010, 115, .	3.3	218
122	Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States. Forest Ecology and Management, 2010, 260, 556-564.	3.2	22
123	Assessment of Secondary Organic Carbon in the Southeastern United States: A Review. Journal of the Air and Waste Management Association, 2010, 60, 1282-1292.	1.9	29
124	Evidence of Reactive Aromatics As a Major Source of Peroxy Acetyl Nitrate over China. Environmental Science & Technology, 2010, 44, 7017-7022.	10.0	84
125	Evaluation of model simulated atmospheric constituents with observations in the factor projected space: CMAQ simulations of SEARCH measurements. Atmospheric Environment, 2009, 43, 1839-1849.	4.1	17
126	Assessment of Biomass Burning Emissions and Their Impacts on Urban and Regional PM _{2.5} : A Georgia Case Study. Environmental Science & Technology, 2009, 43, 299-305.	10.0	79

#	Article	IF	CITATIONS
127	East China Plains: A "Basin―of Ozone Pollution. Environmental Science & Technology, 2009, 43, 1911-1915.	10.0	87
128	Assimilated inversion of NO _x emissions over east Asia using OMI NO ₂ column measurements. Geophysical Research Letters, 2009, 36, .	4.0	118
129	Ozone air quality during the 2008 Beijing Olympics: effectiveness of emission restrictions. Atmospheric Chemistry and Physics, 2009, 9, 5237-5251.	4.9	190
130	Summertime impact of convective transport and lightning NO _x production over North America: modeling dependence on meteorological simulations. Atmospheric Chemistry and Physics, 2009, 9, 4315-4327.	4.9	67
131	Concentrations and sources of aerosol ions and trace elements during ANTCI-2003. Atmospheric Environment, 2008, 42, 2864-2876.	4.1	37
132	A reassessment of Antarctic plateau reactive nitrogen based on ANTCI 2003 airborne and ground based measurements. Atmospheric Environment, 2008, 42, 2831-2848.	4.1	87
133	Assessing the photochemical impact of snow NOxNOx emissions over Antarctica during ANTCI 2003â~†. Atmospheric Environment, 2008, 42, 2849-2863.	4.1	24
134	Statistical correction and downscaling of chemical transport model ozone forecasts over Atlanta. Atmospheric Environment, 2008, 42, 1338-1348.	4.1	30
135	Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 2008, 42, 4126-4137.	4.1	159
136	Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. Science of the Total Environment, 2008, 394, 290-302.	8.0	49
137	Spring to summer northward migration of high O ₃ over the western North Atlantic. Geophysical Research Letters, 2008, 35, .	4.0	34
138	Springtime transitions of NO ₂ , CO, and O ₃ over North America: Model evaluation and analysis. Journal of Geophysical Research, 2008, 113, .	3.3	56
139	Impacts of Prescribed Fires on Air Quality over the Southeastern United States in Spring Based on Modeling and Ground/Satellite Measurements. Environmental Science & Technology, 2008, 42, 8401-8406.	10.0	36
140	Air Quality Impacts from Prescribed Forest Fires under Different Management Practices. Environmental Science & Technology, 2008, 42, 2767-2772.	10.0	34
141	Evaluation of model-simulated source contributions to tropospheric ozone with aircraft observations in the factor-projected space. Atmospheric Chemistry and Physics, 2008, 8, 1751-1761.	4.9	5
142	Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmospheric Chemistry and Physics, 2008, 8, 2595-2607.	4.9	224
143	The effect of lightning NO _x production on surface ozone in the continental United States. Atmospheric Chemistry and Physics, 2008, 8, 5151-5159.	4.9	53
144	Variations of O ₃ and CO in summertime at a rural site near Beijing. Atmospheric Chemistry and Physics, 2008, 8, 6355-6363.	4.9	77

#	Article	IF	CITATIONS
145	Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environmental Pollution, 2007, 149, 336-347.	7.5	39
146	Source characteristics of oxygenated volatile organic compounds and hydrogen cyanide. Journal of Geophysical Research, 2007, 112, .	3.3	42
147	Assessing the photochemical impact of snow NOx emissions over Antarctica during ANTCI 2003. Atmospheric Environment, 2007, 41, 3944-3958.	4.1	53
148	Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan, China. Atmospheric Environment, 2007, 41, 6901-6908.	4.1	104
149	An ozone depletion event in the sub-arctic surface layer over Hudson Bay, Canada. Journal of Atmospheric Chemistry, 2007, 57, 255-280.	3.2	13
150	Late-spring increase of trans-Pacific pollution transport in the upper troposphere. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	43
151	Inverse modeling of the global methyl chloride sources. Journal of Geophysical Research, 2006, 111, .	3.3	23
152	Halogen-driven low-altitude O3and hydrocarbon losses in spring at northern high latitudes. Journal of Geophysical Research, 2006, 111, .	3.3	40
153	Summertime tropospheric ozone columns from Aura OMI/MLS measurements versus regional model results over the United States. Geophysical Research Letters, 2006, 33, .	4.0	24
154	Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment, 2006, 40, 445-466.	4.1	83
155	Atmospheric aerosol over two urban–rural pairs in the southeastern United States: Chemical composition and possible sources. Atmospheric Environment, 2005, 39, 4453-4470.	4.1	116
156	Evidence of lightning NOxand convective transport of pollutants in satellite observations over North America. Geophysical Research Letters, 2005, 32, .	4.0	95
157	Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements. Journal of Geophysical Research, 2005, 110, .	3.3	140
158	Photochemistry of ozone over the western Pacific from winter to spring. Journal of Geophysical Research, 2004, 109, .	3.3	37
159	A three-dimensional global model study of atmospheric methyl chloride budget and distributions. Journal of Geophysical Research, 2004, 109, .	3.3	51
160	On tracer correlations in the troposphere: The case of ethane and propane. Journal of Geophysical Research, 2004, 109, .	3.3	21
161	Tunable diode laser measurements of formaldehyde during the TOPSE 2000 study: Distributions, trends, and model comparisons. Journal of Geophysical Research, 2003, 108, .	3.3	62
162	Springtime photochemistry at northern mid and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	49

#	Article	IF	CITATIONS
163	Widespread persistent near-surface ozone depletion at northern high latitudes in spring. Geophysical Research Letters, 2003, 30, .	4.0	53
164	Intercontinental transport of pollution manifested in the variability and seasonal trend of springtime O3at northern middle and high latitudes. Journal of Geophysical Research, 2003, 108, .	3.3	22
165	Climate forcings in Goddard Institute for Space Studies SI2000 simulations. Journal of Geophysical Research, 2002, 107, ACL 2-1.	3.3	302
166	Factors controlling tropospheric O3, OH, NOxand SO2over the tropical Pacific during PEM-Tropics B. Journal of Geophysical Research, 2001, 106, 32733-32747.	3.3	38
167	Marine latitude/altitude OH distributions: Comparison of Pacific Ocean observations with models. Journal of Geophysical Research, 2001, 106, 32691-32707.	3.3	30
168	Evidence of convection as a major source of condensation nuclei in the northern midlatitude upper troposphere. Geophysical Research Letters, 2000, 27, 369-372.	4.0	32
169	Influence of convection and biomass burning outflow on tropospheric chemistry over the tropical Pacific. Journal of Geophysical Research, 2000, 105, 9321-9333.	3.3	15
170	Distribution of reactive nitrogen species in the remote free troposphere: data and model comparisons. Atmospheric Environment, 1999, 33, 1403-1422.	4.1	79
171	3-D global simulations of tropospheric CO distributions – results of the GIM/IGAC intercomparison 1997 exercise. Chemosphere, 1999, 1, 263-282.	1.2	38
172	On the origin of tropospheric ozone and NOxover the tropical South Pacific. Journal of Geophysical Research, 1999, 104, 5829-5843.	3.3	140
173	Sources of reactive nitrogen in the upper troposphere during SONEX. Geophysical Research Letters, 1999, 26, 2441-2444.	4.0	15
174	Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure. Journal of Geophysical Research, 1998, 103, 19149-19159.	3.3	148
175	Anthropogenic forcing on tropospheric ozone and OH since preindustrial times. Journal of Geophysical Research, 1998, 103, 31123-31135.	3.3	223
176	Sources and chemistry of NOxin the upper troposphere over the United States. Geophysical Research Letters, 1998, 25, 1705-1708.	4.0	126
177	Seasonal budgets of reactive nitrogen species and ozone over the United States, and export fluxes to the global atmosphere. Journal of Geophysical Research, 1998, 103, 13435-13450.	3.3	159
178	Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons. Journal of Geophysical Research, 1998, 103, 10757-10767.	3.3	257
179	Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 2. Model evaluation and global ozone budget. Journal of Geophysical Research, 1998, 103, 10727-10755.	3.3	203
180	Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 1. Model formulation. Journal of Geophysical Research, 1998, 103, 10713-10725.	3.3	527

#	Article	IF	CITATIONS
181	Latitudinal distribution of reactive nitrogen in the free troposphere over the Pacific Ocean in late winter/early spring. Journal of Geophysical Research, 1998, 103, 28237-28246.	3.3	52
182	Forcing of the Austral Autumn Surface Pressure Change over the Antarctic Continent*. Journals of the Atmospheric Sciences, 1997, 54, 1410-1422.	1.7	4
183	Climatologies of NOxx and NOy: A comparison of data and models. Atmospheric Environment, 1997, 31, 1851-1904.	4.1	111