List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5884122/publications.pdf Version: 2024-02-01



MEDUVNIR

| #  | Article                                                                                                                                                                                                                  | IF     | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 1  | Streptomyces venezuelae NRRL B-65442: genome sequence of a model strain used to study<br>morphological differentiation in filamentous actinobacteria. Journal of Industrial Microbiology and<br>Biotechnology, 2021, , . | 3.0    | 14        |
| 2  | Genome editing reveals that pSCL4 is required for chromosome linearity in Streptomyces clavuligerus. Microbial Genomics, 2021, 7, .                                                                                      | 2.0    | 2         |
| 3  | <i>In Situ</i> Activation and Heterologous Production of a Cryptic Lantibiotic from an African Plant<br>Ant-Derived <i>Saccharopolyspora</i> Species. Applied and Environmental Microbiology, 2020, 86, .                | 3.1    | 22        |
| 4  | New Molecular Tools for Regulation and Improvement of A40926 Glycopeptide Antibiotic Production in Nonomuraea gerenzanensis ATCC 39727. Frontiers in Microbiology, 2020, 11, 8.                                          | 3.5    | 19        |
| 5  | Heterologous Expression of a Cryptic Gene Cluster from Streptomyces leeuwenhoekii C34<br><sup>T</sup> Yields a Novel Lasso Peptide, Leepeptin. Applied and Environmental Microbiology, 2019, 85,                         | 3.1    | 20        |
| 6  | The â€~gifted' actinomycete Streptomyces leeuwenhoekii. Antonie Van Leeuwenhoek, 2018, 111, 1433-1448                                                                                                                    | 8. 1.7 | 24        |
| 7  | Structures of DPAGT1 Explain Glycosylation Disease Mechanisms and Advance TB Antibiotic Design.<br>Cell, 2018, 175, 1045-1058.e16.                                                                                       | 28.9   | 67        |
| 8  | Analysis of the Tunicamycin Biosynthetic Gene Cluster of Streptomyces chartreusis Reveals New<br>Insights into Tunicamycin Production and Immunity. Antimicrobial Agents and Chemotherapy, 2018, 62, .                   | 3.2    | 19        |
| 9  | A novel mechanism of immunity controls the onset of cinnamycin biosynthesis in <i>Streptomyces<br/>cinnamoneus</i> DSM 40646. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 563-572.                   | 3.0    | 21        |
| 10 | Watasemycin biosynthesis in Streptomyces venezuelae: thiazoline C-methylation by a type B radical-SAM methylase homologue. Chemical Science, 2017, 8, 2823-2831.                                                         | 7.4    | 42        |
| 11 | Next Generation Sequencing of Actinobacteria for the Discovery of Novel Natural Products. Marine<br>Drugs, 2016, 14, 78.                                                                                                 | 4.6    | 118       |
| 12 | Discovery of Unusual Biaryl Polyketides by Activation of a Silent <i>Streptomyces venezuelae</i> Biosynthetic Gene Cluster. ChemBioChem, 2016, 17, 2189-2198.                                                            | 2.6    | 50        |
| 13 | Two Master Switch Regulators Trigger A40926 Biosynthesis in Nonomuraea sp. Strain ATCC 39727.<br>Journal of Bacteriology, 2015, 197, 2536-2544.                                                                          | 2.2    | 36        |
| 14 | A <i>rel</i> <scp><i>A</i></scp> â€dependent regulatory cascade for autoâ€induction of microbisporicin<br>production in <scp><i>M</i></scp> <i>icrobispora corallina</i> . Molecular Microbiology, 2015, 97,<br>502-514. | 2.5    | 28        |
| 15 | A Streptomyces coelicolor host for the heterologous expression of Type III polyketide synthase genes.<br>Microbial Cell Factories, 2015, 14, 145.                                                                        | 4.0    | 34        |
| 16 | The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics, 2015, 16, 485.                                | 2.8    | 61        |
| 17 | Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii. Applied and Environmental Microbiology, 2015, 81, 5820-5831.                                     | 3.1    | 38        |
| 18 | New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712. Antimicrobial Agents and Chemotherapy, 2014, 58, 7441-7450.                                                                        | 3.2    | 74        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Heterologous expression of natural product biosynthetic gene clusters in <i>Streptomyces<br/>coelicolor</i> : from genome mining to manipulation of biosynthetic pathways. Journal of Industrial<br>Microbiology and Biotechnology, 2014, 41, 425-431. | 3.0  | 122       |
| 20 | Relationship between Glycopeptide Production and Resistance in the Actinomycete Nonomuraea sp. ATCC 39727. Antimicrobial Agents and Chemotherapy, 2014, 58, 5191-5201.                                                                                 | 3.2  | 24        |
| 21 | Use of the Meganuclease I-Scel of Saccharomycescerevisiae to select for gene deletions in actinomycetes. Scientific Reports, 2014, 4, 7100.                                                                                                            | 3.3  | 57        |
| 22 | Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.                                                             | 10.3 | 1,692     |
| 23 | High resolution crystal structure of Sco5413, a widespread actinomycete MarR family transcriptional regulator of unknown function. Proteins: Structure, Function and Bioinformatics, 2013, 81, 176-182.                                                | 2.6  | 7         |
| 24 | Understanding and manipulating antibiotic production in actinomycetes. Biochemical Society<br>Transactions, 2013, 41, 1355-1364.                                                                                                                       | 3.4  | 59        |
| 25 | Cloning and Analysis of the Planosporicin Lantibiotic Biosynthetic Gene Cluster of Planomonospora<br>alba. Journal of Bacteriology, 2013, 195, 2309-2321.                                                                                              | 2.2  | 42        |
| 26 | Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator<br>through surface plasmon resonance and X-ray crystallography. Nucleic Acids Research, 2013, 41,<br>7009-7022.                                     | 14.5 | 39        |
| 27 | The antibiotic planosporicin coordinates its own production in the actinomycete <i>Planomonospora<br/>alba</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110,<br>E2500-9.                               | 7.1  | 78        |
| 28 | Synthetic RNA Silencing of Actinorhodin Biosynthesis in Streptomyces coelicolor A3(2). PLoS ONE, 2013, 8, e67509.                                                                                                                                      | 2.5  | 18        |
| 29 | Phage P1-Derived Artificial Chromosomes Facilitate Heterologous Expression of the FK506 Gene<br>Cluster. PLoS ONE, 2013, 8, e69319.                                                                                                                    | 2.5  | 80        |
| 30 | Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chemical Science, 2012, 3, 2716.                                                             | 7.4  | 152       |
| 31 | Streptomyces coelicolor as an Expression Host for Heterologous Gene Clusters. Methods in Enzymology, 2012, 517, 279-300.                                                                                                                               | 1.0  | 43        |
| 32 | Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nature<br>Chemistry, 2012, 4, 539-546.                                                                                                                       | 13.6 | 79        |
| 33 | Posttranslational β-methylation and macrolactamidination in the biosynthesis of the bottromycin complex of ribosomal peptide antibiotics. Chemical Science, 2012, 3, 3522.                                                                             | 7.4  | 67        |
| 34 | Genome Sequence of the Abyssomicin- and Proximicin-Producing Marine Actinomycete Verrucosispora maris AB-18-032. Journal of Bacteriology, 2011, 193, 3391-3392.                                                                                        | 2.2  | 24        |
| 35 | Engineering <i>Streptomyces coelicolor</i> for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4, 207-215.                                                                                               | 4.2  | 439       |
| 36 | Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics, 2011, 12, 175.                                                                               | 2.8  | 127       |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Abyssomicin Biosynthesis: Formation of an Unusual Polyketide, Antibioticâ€Feeding Studies and Genetic<br>Analysis. ChemBioChem, 2011, 12, 1401-1410.                                                                                              | 2.6 | 66        |
| 38 | Biosynthesis and Regulation of Grisemycin, a New Member of the Linaridin Family of Ribosomally<br>Synthesized Peptides Produced by Streptomyces griseus IFO 13350. Journal of Bacteriology, 2011, 193,<br>2510-2516.                              | 2.2 | 63        |
| 39 | Feed-Forward Regulation of Microbisporicin Biosynthesis in Microbispora corallina. Journal of<br>Bacteriology, 2011, 193, 3064-3071.                                                                                                              | 2.2 | 39        |
| 40 | A system for the targeted amplification of bacterial gene clusters multiplies antibiotic yield in<br><i>Streptomyces coelicolor</i> . Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 16020-16025. | 7.1 | 66        |
| 41 | ZouA, a Putative Relaxase, Is Essential for DNA Amplification in Streptomyces kanamyceticus. Journal of Bacteriology, 2011, 193, 1815-1822.                                                                                                       | 2.2 | 14        |
| 42 | Draft Genome Sequence of Streptomyces Strain S4, a Symbiont of the Leaf-Cutting Ant Acromyrmex octospinosus. Journal of Bacteriology, 2011, 193, 4270-4271.                                                                                       | 2.2 | 27        |
| 43 | Methods for the genetic manipulation of Nonomuraea sp. ATCC 39727. Journal of Industrial<br>Microbiology and Biotechnology, 2010, 37, 1097-1103.                                                                                                  | 3.0 | 26        |
| 44 | Heterologous expression of the biosynthetic gene clusters of coumermycin A <sub>1</sub> ,<br>clorobiocin and caprazamycins in genetically modified <i>Streptomyces coelicolor</i> strains.<br>Biopolymers, 2010, 93, 823-832.                     | 2.4 | 39        |
| 45 | A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biology, 2010, 8, 109.                                                                                                    | 3.8 | 211       |
| 46 | Analysis of the phosphoproteome of the multicellular bacterium <i>Streptomyces coelicolor</i> A3(2)<br>by protein/peptide fractionation, phosphopeptide enrichment and highâ€accuracy mass spectrometry.<br>Proteomics, 2010, 10, 2486-2497.      | 2.2 | 68        |
| 47 | Novel Mechanism of Glycopeptide Resistance in the A40926 Producer <i>Nonomuraea</i> sp. ATCC 39727. Antimicrobial Agents and Chemotherapy, 2010, 54, 2465-2472.                                                                                   | 3.2 | 43        |
| 48 | Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology (United Kingdom), 2010, 156, 2343-2353.                                                             | 1.8 | 143       |
| 49 | Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13461-13466.                                   | 7.1 | 141       |
| 50 | Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of<br>posttranslationally modified peptides. Proceedings of the National Academy of Sciences of the United<br>States of America, 2010, 107, 16297-16302.     | 7.1 | 123       |
| 51 | Discovery of Unique Lanthionine Synthetases Reveals New Mechanistic and Evolutionary Insights.<br>PLoS Biology, 2010, 8, e1000339.                                                                                                                | 5.6 | 186       |
| 52 | Dissecting tunicamycin biosynthesis by genome mining: cloning and heterologous expression of a minimal gene cluster. Chemical Science, 2010, 1, 581.                                                                                              | 7.4 | 58        |
| 53 | The role of <i>absC,</i> a novel regulatory gene for secondary metabolism, in zincâ€dependent<br>antibiotic production in <i>Streptomyces coelicolor</i> A3(2). Molecular Microbiology, 2009, 74,<br>1427-1444.                                   | 2.5 | 63        |
| 54 | Chapter 4 Analyzing the Regulation of Antibiotic Production in Streptomycetes. Methods in Enzymology, 2009, 458, 93-116.                                                                                                                          | 1.0 | 36        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Manipulating and understanding antibiotic production in <i>Streptomyces coelicolor</i> A3(2) with<br>decoy oligonucleotides. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 1020-1025.                 | 7.1  | 25        |
| 56 | Elongation Factor Tu3 (EF-Tu3) from the Kirromycin Producer Streptomyces ramocissimus ls Resistant to Three Classes of EF-Tu-Specific Inhibitors. Journal of Bacteriology, 2007, 189, 3581-3590.                                                       | 2.2  | 15        |
| 57 | A New Piece of an Old Jigsaw: Glucose Kinase Is Activated Posttranslationally in a Glucose<br>Transport-Dependent Manner in <i>Streptomyces coelicolor </i> A3(2). Journal of Molecular<br>Microbiology and Biotechnology, 2007, 12, 67-74.            | 1.0  | 57        |
| 58 | In vivo DNase I sensitivity of the Streptomyces coelicolor chromosome correlates with gene<br>expression: implications for bacterial chromosome structure. Nucleic Acids Research, 2006, 34,<br>5395-5401.                                             | 14.5 | 9         |
| 59 | Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement<br>of Streptomyces kanamyceticus. Proceedings of the National Academy of Sciences of the United States<br>of America, 2006, 103, 9661-9666.        | 7.1  | 95        |
| 60 | EshA Accentuates ppGpp Accumulation and Is Conditionally Required for Antibiotic Production in Streptomyces coelicolor A3(2). Journal of Bacteriology, 2006, 188, 4952-4961.                                                                           | 2.2  | 42        |
| 61 | A bacterial hormone (the SCB1) directly controls the expression of a pathwayâ€specific regulatory gene<br>in the cryptic type I polyketide biosynthetic gene cluster of <i>Streptomyces coelicolor</i> . Molecular<br>Microbiology, 2005, 56, 465-479. | 2.5  | 146       |
| 62 | Regulation of secondary metabolism in streptomycetes. Current Opinion in Microbiology, 2005, 8, 208-215.                                                                                                                                               | 5.1  | 672       |
| 63 | A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of<br>Streptomyces coelicolor. Molecular Microbiology, 2003, 50, 475-486.                                                                                       | 2.5  | 114       |
| 64 | Engineering of Primary Carbon Metabolism for Improved Antibiotic Production in Streptomyces lividans. Applied and Environmental Microbiology, 2002, 68, 4731-4739.                                                                                     | 3.1  | 79        |
| 65 | Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Molecular Microbiology, 2001, 39, 136-144.                             | 2.5  | 76        |
| 66 | Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new<br>mechanisms for chain initiation and termination in modular multienzymes. Chemistry and Biology,<br>2001, 8, 817-829.                                    | 6.0  | 164       |
| 67 | Functional Analysis of relA and rshA , Two relA/spoT Homologues of Streptomyces coelicolor A3(2).<br>Journal of Bacteriology, 2001, 183, 3488-3498.                                                                                                    | 2.2  | 71        |
| 68 | A complex role for the γâ€butyrolactone SCB1 in regulating antibiotic production in <i>Streptomyces<br/>coelicolor</i> A3(2). Molecular Microbiology, 2001, 41, 1015-1028.                                                                             | 2.5  | 211       |
| 69 | A single amino acid substitution in region 1.2 of the principal sigma factor of Streptomyces coelicolor<br>A3(2) results in pleiotropic loss of antibiotic production. Molecular Microbiology, 2000, 37, 995-1004.                                     | 2.5  | 45        |
| 70 | Glucose kinase of Streptomyces coelicolor A3(2): large-scale purification and biochemical analysis.<br>Antonie Van Leeuwenhoek, 2000, 78, 253-261.                                                                                                     | 1.7  | 45        |
| 71 | Purification and Structural Determination of SCB1, a γ-Butyrolactone That Elicits Antibiotic<br>Production inStreptomyces coelicolor A3(2). Journal of Biological Chemistry, 2000, 275, 11010-11016.                                                   | 3.4  | 154       |
| 72 | Analysis of a <i>ptsH</i> homologue from <i>Streptomyces coelicolor</i> A3(2). FEMS Microbiology<br>Letters, 1999, 177, 279-288.                                                                                                                       | 1.8  | 24        |

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Linear Plasmid SCP1 of Streptomyces coelicolor A3(2) Possesses a Centrally Located Replication Origin and Shows Significant Homology to the Transposon Tn4811. Plasmid, 1999, 42, 174-185.                                                                        | 1.4  | 34        |
| 74 | Actinorhodin and undecylprodigiosin production in wild-type andrelAmutant strains ofStreptomyces coelicolorA3(2) grown in continuous culture. FEMS Microbiology Letters, 1998, 168, 221-226.                                                                          | 1.8  | 60        |
| 75 | A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain<br>an OmpRâ€like DNAâ€binding fold. Molecular Microbiology, 1997, 25, 1181-1184.                                                                                 | 2.5  | 287       |
| 76 | <b>Substrate induction and glucose repression of maltose utilization by <i>Streptomyces<br/>coelicolor</i> A3(2) is controlled by <i>malR</i>, a member of the <i>lacl–galR</i> family of<br/>regulatory genes</b> . Molecular Microbiology, 1997, 23, 537-549.       | 2.5  | 95        |
| 77 | A novel plasmid vector that uses the glucose kinase gene (glkA) for the positive selection of stable gene disruptants in Streptomyces. Gene, 1996, 182, 229-230.                                                                                                      | 2.2  | 21        |
| 78 | Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Molecular Microbiology, 1996, 19, 357-368.                                                                                                            | 2.5  | 83        |
| 79 | afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Molecular Microbiology, 1996, 21, 385-396.                                                                                               | 2.5  | 202       |
| 80 | Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp Gene, 1995, 166, 133-137.                                                                                                                                     | 2.2  | 133       |
| 81 | Glucose repression in Streptomyces coelicolor A3(2): a likely regulatory role for glucose kinase.<br>Molecular Genetics and Genomics, 1994, 244, 135-143.                                                                                                             | 2.4  | 106       |
| 82 | The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is<br>translated in the absence of a conventional ribosome-binding site. Molecular Microbiology, 1994, 14,<br>533-545.                                                    | 2.5  | 178       |
| 83 | The Stringent Response, ppGpp and Antibiotic Production in Streptomyces coelicolor A3(2) Nihon<br>Hosenkin Gakkai Shi = Actinomycetologica, 1994, 8, 1-16.                                                                                                            | 0.3  | 32        |
| 84 | Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated. Molecular Microbiology, 1993, 7, 837-845.                                                                                                 | 2.5  | 194       |
| 85 | Derivatives of pUC18 that have BgfII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene, 1993, 124, 133-134.                                           | 2.2  | 234       |
| 86 | Codon usage in the G+C-rich Streptomyces genome. Gene, 1992, 113, 55-65.                                                                                                                                                                                              | 2.2  | 417       |
| 87 | A simple and reliable turbidimetric and kinetic assay for alpha-amylase that is readily applied to culture supernatants and cell extracts. Journal of Industrial Microbiology, 1990, 5, 295-301.                                                                      | 0.9  | 10        |
| 88 | Tandem promoters, tsrp1 and tsrp2, direct transcription of the thiostrepton resistance gene (tsr) of<br>Streptomyces azureus: Transcriptional initiation from tsrp2 occurs after deletion of the — 35 region.<br>Molecular Genetics and Genomics, 1990, 221, 339-346. | 2.4  | 15        |
| 89 | Streptomycespromoter-probe plasmids that utilise thexylEgene ofPseudomonas putida. Nucleic Acids Research, 1990, 18, 1077-1077.                                                                                                                                       | 14.5 | 77        |
| 90 | A cassette containing thebargene ofStreptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Research, 1990, 18, 1062-1062.                                                                                                             | 14.5 | 78        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Transcriptional analysis of the repressor gene of the temperate Streptomyces phage φC31. Gene, 1989, 85, 275-282.                                                                                                                              | 2.2  | 16        |
| 92  | Organisation of the ribosomal RNA genes in Streptomyces coelicolor A3(2). Molecular Genetics and Genomics, 1988, 211, 191-196.                                                                                                                 | 2.4  | 48        |
| 93  | The repressor gene (c) of the Streptomyces temperate phage ϕc31: Nucleotide sequence, analysis and functional cloning. Molecular Genetics and Genomics, 1988, 213, 269-277.                                                                    | 2.4  | 38        |
| 94  | At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of streptomyces coelicolor A3(2). Cell, 1988, 52, 599-607.                                                                                 | 28.9 | 153       |
| 95  | Cloning, characterisation and regulation of an α-amylase gene from Streptomyces venezuelae. Gene, 1988, 74, 321-334.                                                                                                                           | 2.2  | 73        |
| 96  | The nucleotide sequence of a 16S rRNA gene fromStreptomyces coelicolorA3(2). Nucleic Acids Research, 1987, 15, 7176-7176.                                                                                                                      | 14.5 | 52        |
| 97  | [9] Plasmid and phage vectors for gene cloning and analysis in Streptomyces. Methods in Enzymology,<br>1987, 153, 116-166.                                                                                                                     | 1.0  | 74        |
| 98  | The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis. Molecular Genetics and Genomics, 1987, 209, 101-109.                                                                               | 2.4  | 157       |
| 99  | Cloning and analysis of the promoter region of the erythromycin-resistance gene (ermE) of<br>Streptomyces erythraeus. Gene, 1986, 41, E357-E368.                                                                                               | 2.2  | 261       |
| 100 | Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for<br>Streptomyces using the aminoglycoside phosphotransferase gene from Tn5 as indicator. Molecular<br>Genetics and Genomics, 1986, 203, 468-478. | 2.4  | 405       |
| 101 | Nucleotide sequences encoding and promoting expression of three antibiotic resistance genes indigenous to Streptomyces. Molecular Genetics and Genomics, 1985, 199, 26-36.                                                                     | 2.4  | 164       |
| 102 | The nucleotide sequence of the tyrosinase gene from Streptomyces antibioticus and characterization of the gene product. Gene, 1985, 37, 101-110.                                                                                               | 2.2  | 177       |
| 103 | Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of<br>Streptomyces erythraeus. Gene, 1985, 38, 215-226.                                                                                                 | 2.2  | 312       |
| 104 | Dissecting the <i>Streptomyces</i> genome. Biochemical Society Transactions, 1984, 12, 584-586.                                                                                                                                                | 3.4  | 4         |
| 105 | Cloning Streptomyces genes for antibiotic production. Trends in Biotechnology, 1983, 1, 42-48.                                                                                                                                                 | 9.3  | 43        |
| 106 | Gene expression in Streptomyces: Construction and application of promoter-probe plasmid vectors in Streptomyces lividans. Molecular Genetics and Genomics, 1982, 187, 265-277.                                                                 | 2.4  | 322       |
| 107 | Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Molecular Genetics and Genomics, 1981, 184, 230-240.                                                  | 2.4  | 135       |
| 108 | A DNA cloning system for interspecies gene transfer in antibiotic-producing Streptomyces. Nature, 1980, 284, 526-531.                                                                                                                          | 27.8 | 171       |

| #   | Article                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Transformation of plasmid DNA into Streptomyces at high frequency. Nature, 1978, 274, 398-400.                                                                | 27.8 | 306       |
| 110 | Physical and genetical characterisation of a second sex factor, SCP2, for Streptomyces coelicolor A3(2). Molecular Genetics and Genomics, 1977, 154, 155-166. | 2.4  | 222       |