
Charlotte Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5883620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology, 2003, 200, 155-170.	3.3	2,017
2	Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 2004, 205, 115-140.	3.3	1,472
3	Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997, 38, 371-391.	2.8	981
4	Are Aâ€ŧype granites the highâ€ŧemperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australian Journal of Earth Sciences, 2001, 48, 501-514.	1.0	324
5	Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 2008, 1, 554-558.	12.9	323
6	Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth?. Earth and Planetary Science Letters, 2006, 250, 116-133.	4.4	286
7	Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 2006, 41, 152-159.	4.1	257
8	The Tarim picrite–basalt–rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis. Contributions To Mineralogy and Petrology, 2010, 160, 407-425.	3.1	237
9	Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 2008, 36, 79.	4.4	174
10	Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology, 2003, 31, 761.	4.4	163
11	Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons. Earth-Science Reviews, 2018, 176, 87-116.	9.1	153
12	The Proterozoic magmatic and metamorphic history of the Banded Gneiss Complex, central Rajasthan, India: LA-ICP-MS U–Pb zircon constraints. Precambrian Research, 2006, 151, 119-142.	2.7	151
13	(U-Th)/(He-Pb) double dating of detrital zircons. Numerische Mathematik, 2005, 305, 259-311.	1.4	148
14	The Age of the Potassic Alkaline Igneous Rocks along the Ailao Shan–Red River Shear Zone: Implications for the Onset Age of Left‣ateral Shearing. Journal of Geology, 2007, 115, 231-242.	1.4	136
15	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	3.9	136
16	He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: Implication for quantifying sediment recycling and provenance studies. Earth and Planetary Science Letters, 2005, 237, 402-432.	4.4	135
17	Allanite micro-geochronology: A LA-ICP-MS and SHRIMP U–Th–Pb study. Chemical Geology, 2007, 245, 162-182.	3.3	122
18	Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica Et Cosmochimica Acta, 2011, 75, 1374-1395.	3.9	122

#	Article	IF	CITATIONS
19	Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chemical Geology, 2012, 332-333, 157-165.	3.3	117
20	Rate of growth of the preserved North American continental crust: Evidence from Hf and O isotopes in Mississippi detrital zircons. Geochimica Et Cosmochimica Acta, 2009, 73, 712-728.	3.9	113
21	Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology, 2008, 36, 711.	4.4	110
22	Solubility of Pt in sulphide mattes: Implications for the genesis of PGE-rich horizons in layered intrusions. Geochimica Et Cosmochimica Acta, 2009, 73, 5764-5777.	3.9	110
23	New Insights into Crustal Contributions to Large-volume Rhyolite Generation in the Mid-Tertiary Sierra Madre Occidental Province, Mexico, Revealed by U–Pb Geochronology. Journal of Petrology, 2008, 49, 47-77.	2.8	101
24	The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	100
25	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
26	Evidence for Multiple Recycling in Neoproterozoic through Pennsylvanian Sedimentary Rocks of the Central Appalachian Basin. Journal of Geology, 2004, 112, 261-276.	1.4	95
27	Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China. Lithos, 2010, 118, 145-155.	1.4	92
28	ELA-ICP-MS U?Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu?Au deposit: implications for porphyry-related mineralization. Mineralium Deposita, 2004, 39, 46-67.	4.1	89
29	Earth's oldest stable crust in the Pilbara Craton formed by cyclic gravitational overturns. Nature Geoscience, 2018, 11, 357-361.	12.9	86
30	Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos, 2008, 106, 12-24.	1.4	83
31	U–Th–Pb detrital zircon geochronology from the southern Prince Charles Mountains, East Antarctica—Defining the Archaean to Neoproterozoic Ruker Province. Precambrian Research, 2006, 148, 292-306.	2.7	82
32	Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	80
33	Growth rate of the preserved continental crust: II. Constraints from Hf and O isotopes in detrital zircons from Greater Russian Rivers. Geochimica Et Cosmochimica Acta, 2011, 75, 1308-1345.	3.9	74
34	The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth's mantle: New evidence from in situ analyses of mantle xenoliths. Geochimica Et Cosmochimica Acta, 2009, 73, 1755-1778.	3.9	72
35	An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology. Contributions To Mineralogy and Petrology, 2010, 160, 719-742.	3.1	72
36	Multimillion year thermal history of a porphyry copper deposit: application of U–Pb, 40Ar/39Ar and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina. Mineralium Deposita, 2008, 43, 295-314.	4.1	71

#	Article	IF	CITATIONS
37	Early-mid Cretaceous tectonic evolution of eastern Gondwana: From silicic LIP magmatism to continental rupture. Episodes, 2012, 35, 142-152.	1.2	71
38	S-type granites: Their origin and distribution through time as determined from detrital zircons. Earth and Planetary Science Letters, 2020, 536, 116140.	4.4	70
39	Flat rare earth element patterns as an indicator of cumulate processes in the Lesser Qinling carbonatites, China. Lithos, 2007, 95, 267-278.	1.4	68
40	Granite genesis and basin formation in an extensional setting: The magmatic history of the Northernmost New England Orogen*. Australian Journal of Earth Sciences, 1998, 45, 875-888.	1.0	65
41	Petrologic, isotopic, and radiometric age constraints on the origin and tectonic history of the Malino Metamorphic Complex, NW Sulawesi, Indonesia. Journal of Asian Earth Sciences, 2007, 29, 751-777.	2.3	64
42	Two cycles of voluminous pyroclastic volcanism and sedimentation related to episodic granite emplacement during the late Archean: Eastern Yilgarn Craton, Western Australia. Precambrian Research, 2010, 183, 251-274.	2.7	63
43	Predominance of Grenvillian Magmatism Recorded in Detrital Zircons from Modern Appalachian Rivers. Journal of Geology, 2003, 111, 707-717.	1.4	57
44	U–Pb zircon age, geochemical and isotopic characteristics of carbonatite and syenite complexes from the Shaxiongdong, China. Lithos, 2008, 105, 118-128.	1.4	57
45	Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides. , 2007, 3, 683.		53
46	The Palu Metamorphic Complex, NW Sulawesi, Indonesia: Origin and evolution of a young metamorphic terrane with links to Gondwana and Sundaland. Journal of Asian Earth Sciences, 2016, 115, 133-152.	2.3	52
47	U-Pb Zircon Geochronology of Granitic Rocks from the Chuquicamata-El Abra Porphyry Copper Belt of Northern Chile: Excimer Laser Ablation ICP-MS Analysis. Economic Geology, 2006, 101, 1327-1344.	3.8	51
48	U-Pb zircon geochronology of Late Devonian to Early Carboniferous extension-related silicic volcanism in the northern New England Fold Belt*. Australian Journal of Earth Sciences, 2004, 51, 645-664.	1.0	49
49	Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth. Earth and Planetary Science Letters, 2004, 220, 247-264.	4.4	47
50	Intrusive metallogenic provinces in eastern Australia based on granite source and composition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1996, 87, 281-290.	0.3	45
51	Age of the Los Ranchos Formation, Dominican Republic: Timing and tectonic setting of primitive island arc volcanism in the Caribbean region. Bulletin of the Geological Society of America, 2005, 117, 987.	3.3	44
52	Granite suites and supersuites of eastern Australia. Australian Journal of Earth Sciences, 2001, 48, 515-530.	1.0	43
53	Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contributions To Mineralogy and Petrology, 2009, 157, 663-687.	3.1	42
54	Open―and closedâ€system characteristics of a tilted plutonic system, Klamath Mountains, California. Journal of Geophysical Research, 1986, 91, 6073-6090.	3.3	41

#	Article	IF	CITATIONS
55	Monsoon control over erosion patterns in the Western Himalaya: possible feed-back into the tectonic evolution. Geological Society Special Publication, 2010, 342, 185-218.	1.3	40
56	Evolution of a post-batholith dike swarm in central coastal Queensland, Australia: arc-front to backarc?. Lithos, 2000, 51, 331-349.	1.4	39
57	Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record. Tectonics, 2004, 23, n/a-n/a.	2.8	39
58	Multiple 3.47-Ga-old asteroid impact fallout units, Pilbara Craton, Western Australiaâ~†. Earth and Planetary Science Letters, 2004, 221, 383-396.	4.4	35
59	Possible obsidian sources for artifacts from Timor: narrowing the options using chemical data. Journal of Archaeological Science, 2009, 36, 607-615.	2.4	32
60	Geology and Geochronology of the Golpu Porphyry and Wafi Epithermal Deposit, Morobe Province, Papua New Guinea. Economic Geology, 2018, 113, 271-294.	3.8	26
61	Provenance of Eocene river sediments from the central northern Sierra Nevada and implications for paleotopography. Tectonics, 2010, 29, n/a-n/a.	2.8	25
62	Chalcophile element geochemistry of the Boggy Plain zoned pluton, southeastern Australia: a S-saturated barren compositionally diverse magmatic system. Contributions To Mineralogy and Petrology, 2013, 165, 217-236.	3.1	25
63	Permian rifting and isolation of New Caledonia: Evidence from detrital zircon geochronology. Gondwana Research, 2018, 60, 54-68.	6.0	23
64	The temporal distribution of Earth's supermountains and their potential link to the rise of atmospheric oxygen and biological evolution. Earth and Planetary Science Letters, 2022, 580, 117391.	4.4	21
65	The tectonic significance of lower Permian successions in the Texas Orocline (Eastern Australia). Australian Journal of Earth Sciences, 2015, 62, 789-806.	1.0	20
66	Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2015, 898, 19-27.	5.4	20
67	Late Paleozoic crustal history of central coastal Queensland interpreted from geochemistry of Mesozoic plutons: The effects of continental rifting. Lithos, 1997, 42, 67-88.	1.4	19
68	Ediacaran–Cambrian basin evolution in the Koonenberry Belt (eastern Australia): Implications for the geodynamics of the Delamerian Orogen. Gondwana Research, 2016, 37, 266-284.	6.0	19
69	Oroclineâ€driven transtensional basins: Insights from the Lower Permian Manning Basin (eastern) Tj ETQq1 1 (0.784314 rg 2.8	gBT_/Overloc
70	Crustal Evolution in the New England Orogen, Australia: Repeated Igneous Activity and Scale of Magmatism Govern the Composition and Isotopic Character of the Continental Crust. Journal of Petrology, 2020, 61, .	2.8	17
71	A nested diapir model for the reversely zoned Turtle Pluton, southeastern California. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83, 179-190.	0.3	16
72	Ages and some cryptic sources of Mesozoic plutonic rocks in the Klamath Mountains, California and Oregon. , 2006, , .		16

5

#	Article	IF	CITATIONS
73	Effects of thermal annealing and chemical abrasion on ca. 3.5 Ga metamict zircon and evidence for natural reverse discordance: Insights for U Pb LA-ICP-MS dating. Chemical Geology, 2017, 466, 285-302.	3.3	16
74	Platinum Group Element Geochemistry of Andesite Intrusions of the Kelian Region, East Kalimantan, Indonesia: Implications of Gold Depletion in the Intrusions Associated with the Kelian Gold Deposit. Economic Geology, 2007, 102, 95-108.	3.8	15
75	Determination of Selenium Concentrations in NIST SRM 610, 612, 614 and Geological Glass Reference Materials Using the Electron Probe, LA″CPâ€MS and SHRIMP II. Geostandards and Geoanalytical Research, 2009, 33, 309-317.	3.1	15
76	Crustal and thermal structure of the Thomson Orogen: constraints from the geochemistry, zircon U–Pb age, and Hf and O isotopes of subsurface granitic rocks. Australian Journal of Earth Sciences, 2018, 65, 967-986.	1.0	15
77	Marine Volcanosedimentary Basins Hosting Porphyry Au-Cu Deposits, Cadia Valley, New South Wales, Australia. Economic Geology, 2014, 109, 1117-1135.	3.8	13
78	Petrography and provenance of Upper Cretaceous – Palaeogene sandstones in the foreland basin system of Central Nepal. International Geology Review, 2018, 60, 135-156.	2.1	13
79	Origin of dispersed Permian–Triassic fore-arc basin terranes in New Zealand: Insights from zircon petrochronology. Gondwana Research, 2020, 78, 210-227.	6.0	13
80	Analysing Sr isotopes in low‣r samples such as single insects with inductively coupled plasma tandem mass spectrometry using N ₂ O as a reaction gas for inâ€line Rb separation. Rapid Communications in Mass Spectrometry, 2020, 34, e8604.	1.5	13
81	The largest Au deposits in the St Ives Goldfield (Yilgarn Craton, Western Australia) may be located in a major Neoarchean volcano-sedimentary depo-centre. Mineralium Deposita, 2013, 48, 861-881.	4.1	11
82	Continental Crustal Growth Processes Revealed by Detrital Zircon Petrochronology: Insights From Zealandia. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019075.	3.4	11
83	Trace-element compositions of sapphire and ruby from the eastern Australian gemstone belt. Mineralogical Magazine, 2017, 81, 1551-1576.	1.4	8
84	Geochronology and geochemistry of the Devonian Gumbardo Formation (Adavale Basin): evidence for cratonisation of the Central Thomson Orogen by the Early Devonian. Australian Journal of Earth Sciences, 2018, 65, 1133-1159.	1.0	8
85	Lepong: A New Obsidian Source in the Admiralty Islands, Papua New Guinea. Geoarchaeology - an International Journal, 2014, 29, 238-248.	1.5	7
86	Detrital zircon U–Pb geochronology of Permian strata in the Galilee Basin, Queensland, Australia. Australian Journal of Earth Sciences, 2018, 65, 465-481.	1.0	7
87	Episodic behavior of the eastern Gondwanan margin: Insights from detrital zircon petrochronology from the Murihiku Terrane, New Zealand. Lithos, 2020, 356-357, 105367.	1.4	7
88	Geochronological (U–Pb, U–Th–total Pb, Sm–Nd) and geochemical (REE, 87Sr/86Sr, Î′18O, Î′13C) tracing intraplate tectonism and associated fluid flow in the Warburton Basin, Australia. Contributions To Mineralogy and Petrology, 2014, 168, 1.	g of 3.1	6
89	Multiple post-depositional thermal events in the Drummond Basin, Australia: Evidence from apatite and zircon (U Th)/He thermochronology. Tectonophysics, 2019, 767, 128146.	2.2	6
90	Provenance of Jurassic-Cretaceous Tethyan Himalayan sequences in the Thakkhola Section- Nepal, inferring pre-collisional tectonics of the central Himalaya. Journal of Asian Earth Sciences, 2020, 192, 104288.	2.3	6

#	Article	IF	CITATIONS
91	Detrital zircon petrochronology of central Australia, and implications for the secular record of zircon trace element composition. , 2021, 17, 538-560.		6
92	Juvenile continental crust evolution in a modern oceanic arc setting: Petrogenesis of Cenozoic felsic plutons in Fiji, SW Pacific. Geochimica Et Cosmochimica Acta, 2022, 320, 339-365.	3.9	6
93	A nested diapir model for the reversely zoned Turtle Pluton, southeastern California. Special Paper of the Geological Society of America, 1992, , 179-190.	0.5	5
94	25 years of I and S granites. Australian Journal of Earth Sciences, 2001, 48, 487-488.	1.0	5
95	Age of the Pueblo Viejo Gold-Silver Deposit and Its Significance to Modelsfor High-Sulfidation Epithermal Mineralization. Economic Geology, 2005, 100, 253-272.	3.8	5
96	Depth of origin of late Middle Jurassic garnet andesite, southern Klamath Mountains, California. , 2006, , .		4
97	Detrital zircon U-Pb-He double dating: A method of quantifying long- and short-term exhumation rates in collisional orogens. Science China Earth Sciences, 2014, 57, 2702-2711.	5.2	4
98	Early deformation in the Eastern Goldfields, Yilgarn Craton, Western Australia: A record of early thrusting?. Precambrian Research, 2015, 266, 212-226.	2.7	4
99	The Onset of Gondwanide Orogeny in Eastern Australia: Insight From the Provenance of Synâ€Orogenic Strata in the New England Orogen (Australia). Tectonics, 2022, 41, .	2.8	2
100	Intrusive metallogenic provinces in eastern Australia based on granite source and composition. , 1996, , .		1
101	Reply to Comment by Offler et al. (2017) on "Oroclineâ€Đriven Transtensional Basins: Insights From the Lower Permian Manning Basin (Eastern Australia)― Tectonics, 2018, 37, 396-399.	2.8	1
102	Origin of the Intraâ€Oceanic Silverwood Block (New England Orogen, Australia): Evidence From Radiolarian Biostratigraphy and Detrital Zircon Petrochronology. Tectonics, 2021, 40, .	2.8	1
103	Timing of volatile and magma ascent in the formation of the Bajo de la Alumbrera porphyry Cu-Au deposit. , 2005, , 393-396.		0
104	Detrital zircon analysis from the Galilee Basin, Queensland ASEG Extended Abstracts, 2018, 2018, 1-8.	0.1	0