
## Ujwal Shinde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588284/publications.pdf Version: 2024-02-01



HINNAL SHINDE

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Resistance Profile and Structural Modeling of Next-Generation ROS1 Tyrosine Kinase Inhibitors.<br>Molecular Cancer Therapeutics, 2022, 21, 336-346.                                                                                 | 4.1 | 20        |
| 2  | A Broccoli aptamer chimera yields a fluorescent K+ sensor spanning physiological concentrations.<br>Chemical Communications, 2021, 57, 1344-1347.                                                                                   | 4.1 | 2         |
| 3  | Signaling-Biased and Constitutively Active Dopamine D2 Receptor Variant. ACS Chemical Neuroscience, 2021, 12, 1873-1884.                                                                                                            | 3.5 | 9         |
| 4  | NTRK kinase domain mutations in cancer variably impact sensitivity to type I and type II inhibitors.<br>Communications Biology, 2020, 3, 776.                                                                                       | 4.4 | 34        |
| 5  | Subtle sequence variations alter tripartite complex kinetics and G-quadruplex dynamics in RNA aptamer Broccoli. Chemical Communications, 2020, 56, 2634-2637.                                                                       | 4.1 | 5         |
| 6  | Tumor Analyses Reveal Squamous Transformation and Off-Target Alterations As Early Resistance<br>Mechanisms to First-line Osimertinib in <i>EGFR</i> -Mutant Lung Cancer. Clinical Cancer Research,<br>2020, 26, 2654-2663.          | 7.0 | 230       |
| 7  | A ribose modification of Spinach aptamer accelerates lead(ii) cation association in vitro. Chemical Communications, 2019, 55, 5882-5885.                                                                                            | 4.1 | 4         |
| 8  | Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia, 2018, 32, 2374-2387.                                                                              | 7.2 | 43        |
| 9  | Caught in the act – protein adaptation and the expanding roles of the PACS proteins in tissue homeostasis and disease. Journal of Cell Science, 2017, 130, 1865-1876.                                                               | 2.0 | 31        |
| 10 | Biochemical, Molecular, and Clinical Characterization of Succinate Dehydrogenase Subunit A<br>Variants of Unknown Significance. Clinical Cancer Research, 2017, 23, 6733-6743.                                                      | 7.0 | 12        |
| 11 | Mechanism of Fine-tuning pH Sensors in Proprotein Convertases. Journal of Biological Chemistry, 2015, 290, 23214-23225.                                                                                                             | 3.4 | 11        |
| 12 | Determination of Histidine p <i>K</i> <sub>a</sub> Values in the Propeptides of Furin and Proprotein<br>Convertase 1/3 Using Histidine Hydrogen–Deuterium Exchange Mass Spectrometry. Analytical<br>Chemistry, 2015, 87, 7909-7917. | 6.5 | 10        |
| 13 | Protein Folding Mediated by an Intramolecular Chaperone: Energy Landscape for Unimolecular<br>Pro-Subtilisin E Maturation. Advances in Bioscience and Biotechnology (Print), 2015, 06, 73-88.                                       | 0.7 | 4         |
| 14 | Pacritinib, a Dual FLT3/JAK2 Inhibitor, Reduces Irak-1 Signaling in Acute Myeloid Leukemia. Blood, 2015, 126, 570-570.                                                                                                              | 1.4 | 2         |
| 15 | Cotranslational folding inhibits translocation from within the ribosome–Sec61 translocon complex.<br>Nature Structural and Molecular Biology, 2014, 21, 228-235.                                                                    | 8.2 | 24        |
| 16 | The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin. Journal of Biological Chemistry, 2013, 288, 19154-19165.                                                                        | 3.4 | 23        |
| 17 | Propeptides of eukaryotic proteases encode histidines to exploit organelle pH for regulation. FASEB<br>Journal, 2013, 27, 2939-2945.                                                                                                | 0.5 | 2         |
| 18 | Propeptides Are Sufficient to Regulate Organelle-Specific pH-Dependent Activation of Furin and<br>Proprotein Convertase 1/3. Journal of Molecular Biology, 2012, 423, 47-62.                                                        | 4.2 | 25        |

UJWAL SHINDE

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Insights from Bacterial Subtilases into the Mechanisms of Intramolecular Chaperone-Mediated<br>Activation of Furin. Methods in Molecular Biology, 2011, 768, 59-106.                                                      | 0.9 | 57        |
| 20 | COMMD1 Forms Oligomeric Complexes Targeted to the Endocytic Membranes via Specific Interactions with Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2009, 284, 696-707.                          | 3.4 | 38        |
| 21 | ldentification of a pH Sensor in the Furin Propeptide That Regulates Enzyme Activation. Journal of<br>Biological Chemistry, 2006, 281, 16108-16116.                                                                       | 3.4 | 71        |
| 22 | Positive Selection Dictates the Choice between Kinetic and Thermodynamic Protein Folding and Stability in Subtilases. Biochemistry, 2004, 43, 14348-14360.                                                                | 2.5 | 29        |
| 23 | Folding Pathway Mediated by an Intramolecular Chaperone. Journal of Biological Chemistry, 2003, 278, 15246-15251.                                                                                                         | 3.4 | 30        |
| 24 | Folding Pathway Mediated by an Intramolecular Chaperone: Dissecting Conformational Changes<br>Coincident with Autoprocessing and the Role of Ca2+ in Subtilisin Maturation. Journal of<br>Biochemistry, 2002, 131, 31-37. | 1.7 | 45        |
| 25 | Folding pathway mediated by an intramolecular chaperone: the structural and functional characterization of the aqualysin I propeptide. Journal of Molecular Biology, 2001, 305, 151-165.                                  | 4.2 | 46        |
| 26 | Functional analysis of the propeptides of subtilisin E and aqualysin I as intramolecular chaperones.<br>FEBS Letters, 2001, 508, 210-214.                                                                                 | 2.8 | 22        |
| 27 | Folding Pathway Mediated by an Intramolecular Chaperone. Journal of Biological Chemistry, 2001, 276, 44427-44434.                                                                                                         | 3.4 | 99        |
| 28 | Substrate-induced activation of a trapped IMC-mediated protein folding intermediate. Nature<br>Structural Biology, 2001, 8, 321-325.                                                                                      | 9.7 | 20        |
| 29 | Folding Pathway Mediated by an Intramolecular Chaperone. Journal of Biological Chemistry, 2000, 275, 16871-16878.                                                                                                         | 3.4 | 65        |
| 30 | Intramolecular chaperones: polypeptide extensions that modulate protein folding. Seminars in Cell<br>and Developmental Biology, 2000, 11, 35-44.                                                                          | 5.0 | 129       |
| 31 | A Pathway for Conformational Diversity in Proteins Mediated by Intramolecular Chaperones. Journal of Biological Chemistry, 1999, 274, 15615-15621.                                                                        | 3.4 | 67        |
| 32 | The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 å<br>resolution 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1998, 284, 137-144.                                   | 4.2 | 151       |
| 33 | Folding Mediated by an Intramolecular Chaperone: Autoprocessing Pathway of the Precursor<br>Resolvedviaa Substrate Assisted Catalysis Mechanism. Journal of Molecular Biology, 1995, 247, 390-395.                        | 4.2 | 60        |
| 34 | Folding Pathway Mediated by an Intramolecular Chaperone: Characterization of the Structural<br>Changes in Pro-subtilisin E Coincident with Autoprocess ing. Journal of Molecular Biology, 1995, 252,<br>25-30.            | 4.2 | 55        |
| 35 | The Structural and Functional Organization of Intramolecular Chaperones: The N-Terminal<br>Propeptides Which Mediate Protein Folding1. Journal of Biochemistry, 1994, 115, 629-636.                                       | 1.7 | 53        |
| 36 | Intramolecular chaperones and protein folding. Trends in Biochemical Sciences, 1993, 18, 442-446.                                                                                                                         | 7.5 | 164       |