Serge Mostowy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882664/publications.pdf

Version: 2024-02-01

100 papers 14,366 citations

43 h-index

61984

28297 105 g-index

168 all docs

168 docs citations

168 times ranked $\begin{array}{c} 26920 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Septins promote caspase activity and coordinate mitochondrial apoptosis. Cytoskeleton, 2023, 80, 254-265.	2.0	7
2	Pyroptosis in host defence against bacterial infection. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	24
3	Mechanistic insight into bacterial entrapment by septin cage reconstitution. Nature Communications, 2021, 12, 4511.	12.8	24
4	Emerging technologies and infection models in cellular microbiology. Nature Communications, 2021, 12, 6764.	12.8	19
5	The Case for Modeling Human Infection in Zebrafish. Trends in Microbiology, 2020, 28, 10-18.	7.7	132
6	Shigella sonnei. Trends in Microbiology, 2020, 28, 696-697.	7.7	21
7	In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. Nature Communications, 2020, 11, 6172.	12.8	36
8	A membrane-depolarizing toxin substrate of the <i>Staphylococcus aureus</i> type VII secretion system mediates intraspecies competition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20836-20847.	7.1	57
9	Mimicry Embedding Facilitates Advanced Neural Network Training for Image-Based Pathogen Detection. MSphere, 2020, 5, .	2.9	5
10	Defects in <i>LC3B2</i> and <i>ATG4A</i> underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Science Immunology, 2020, 5, .	11.9	27
11	The zebrafish as a novel model for the <i>in vivo</i> study of <i>Toxoplasma gondii</i> replication and interaction with macrophages. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	16
12	The history of septin biology and bacterial infection. Cellular Microbiology, 2020, 22, e13173.	2.1	21
13	A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular <i>Shigella</i> Cytoskeleton, 2019, 76, 163-172.	2.0	17
14	<i>Shigella</i> MreB promotes polar IcsA positioning for actin tail formation. Journal of Cell Science, 2019, 132, .	2.0	11
15	Role of septins in microbial infection. Journal of Cell Science, 2019, 132, .	2.0	24
16	Bacterial cell division is recognized by the septin cytoskeleton for restriction by autophagy. Autophagy, 2019, 15, 937-939.	9.1	5
17	Editorial overview: The molecular and cellular biology of septins. Cytoskeleton, 2019, 76, 5-6.	2.0	0
18	Shigella sonneiÂinfection of zebrafish reveals that O-antigen mediates neutrophil tolerance and dysentery incidence. PLoS Pathogens, 2019, 15, e1008006.	4.7	22

#	Article	IF	CITATIONS
19	Possible role of L-form switching in recurrent urinary tract infection. Nature Communications, 2019, 10, 4379.	12.8	65
20	Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection. Journal of Allergy and Clinical Immunology, 2019, 143, 765-769.e7.	2.9	18
21	In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5. PLoS ONE, 2019, 14, e0210508.	2.5	18
22	$\mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc Shigella sonnei}\mbox{\sc /i}\mbox{\sc O-Antigen Inhibits Internalization, Vacuole Escape, and Inflammasome Activation. MBio, 2019, 10, .}$	4.1	22
23	Use of zebrafish to study <i>Shigella</i> infection. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	36
24	Robust Phagocyte Recruitment Controls the Opportunistic Fungal Pathogen <i>Mucor circinelloides</i> in Innate Granulomas <i>In Vivo</i> MBio, 2018, 9, .	4.1	24
25	Mitochondria promote septin assembly into cages that entrap <i>Shigella</i> for autophagy. Autophagy, 2018, 14, 913-914.	9.1	13
26	Zebrafish Infection: From Pathogenesis to Cell Biology. Trends in Cell Biology, 2018, 28, 143-156.	7.9	136
27	Autophagy-Virus Interplay: From Cell Biology to Human Disease. Frontiers in Cell and Developmental Biology, 2018, 6, 155.	3.7	112
28	Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host and Microbe, 2018, 24, 866-874.e4.	11.0	62
29	Intact Cell Lipidomics Reveal Changes to the Ratio of Cardiolipins to Phosphatidylinositols in Response to Kanamycin in HeLa and Primary Cells. Chemical Research in Toxicology, 2018, 31, 688-696.	3.3	2
30	Bacterial Autophagy: How to Take a Complement. Cell Host and Microbe, 2018, 23, 580-582.	11.0	2
31	<i>Shigella</i> -Induced Emergency Granulopoiesis Protects Zebrafish Larvae from Secondary Infection. MBio, 2018, 9, .	4.1	28
32	Septins suppress the release of vaccinia virus from infected cells. Journal of Cell Biology, 2018, 217, 2911-2929.	5.2	31
33	Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nature Microbiology, 2017, 2, 17027.	13.3	61
34	Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nature Communications, 2017, 8, 15048.	12.8	27
35	Endoplasmic reticulum chaperone Gp96 controls actomyosin dynamics and protects against poreâ€forming toxins. EMBO Reports, 2017, 18, 303-318.	4.5	22
36	SUMOylation of human septins is critical for septin filament bundling and cytokinesis. Journal of Cell Biology, 2017, 216, 4041-4052.	5.2	48

3

#	Article	IF	Citations
37	<i>Salmonella</i> ubiquitination: ARIH1 enters the fray. EMBO Reports, 2017, 18, 1476-1477.	4.5	1
38	Wiskott-Aldrich syndrome protein regulates autophagy and inflammasome activity in innate immune cells. Nature Communications, 2017, 8, 1576.	12.8	50
39	Macrophage–Microbe Interactions: Lessons from the Zebrafish Model. Frontiers in Immunology, 2017, 8, 1703.	4.8	40
40	Septins restrict inflammation and protect zebrafish larvae from Shigella infection. PLoS Pathogens, 2017, 13, e1006467.	4.7	51
41	Mechanical force induces mitochondrial fission. ELife, 2017, 6, .	6.0	125
42	Septins and Bacterial Infection. Frontiers in Cell and Developmental Biology, 2016, 4, 127.	3.7	39
43	Interactions between Shigella flexneri and the Autophagy Machinery. Frontiers in Cellular and Infection Microbiology, 2016, 6, 17.	3.9	17
44	Mitochondria mediate septin cage assembly to promote autophagy of <i>Shigella</i> . EMBO Reports, 2016, 17, 1029-1043.	4.5	91
45	Septins recognize micron-scale membrane curvature. Journal of Cell Biology, 2016, 213, 5-6.	5.2	8
46	Calcineurin Orchestrates Lateral Transfer of <i>Aspergillus fumigatus</i> during Macrophage Cell Death. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1127-1139.	5.6	54
47	Investigation of septins using infection by bacterial pathogens. Methods in Cell Biology, 2016, 136, 117-134.	1.1	4
48	Investigation of septin biology in vivo using zebrafish. Methods in Cell Biology, 2016, 136, 221-241.	1.1	8
49	Injections of Predatory Bacteria Work Alongside Host Immune Cells to Treat Shigella Infection in Zebrafish Larvae. Current Biology, 2016, 26, 3343-3351.	3.9	131
50	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
51	Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. Journal of Microbiological Methods, 2016, 120, 68-71.	1.6	46
52	Phagocytosisâ€dependent activation of a <scp>TLR</scp> 9â€" <scp>BTK</scp> â€"calcineurinâ€" <scp>NFAT</scp> pathway coâ€ordinates innate immuni to <i>Aspergillus fumigatus</i> . EMBO Molecular Medicine, 2015, 7, 240-258.	ity6.9	153
53	The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nature Reviews Immunology, 2015, 15, 559-573.	22.7	141
54	Multiple Roles of the Cytoskeleton in Bacterial Autophagy. PLoS Pathogens, 2014, 10, e1004409.	4.7	37

#	Article	IF	CITATIONS
55	Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions. Journal of Visualized Experiments, 2014, , e51601.	0.3	14
56	Autophagy and bacterial clearance: a not so clear picture. Cellular Microbiology, 2013, 15, 395-402.	2.1	89
57	Autophagy selectively regulates miRNA homeostasis. Autophagy, 2013, 9, 781-783.	9.1	38
58	Speciesâ€specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Reports, 2013, 14, 534-544.	4.5	121
59	Role of Endothelial Cell Septin 7 in the Endocytosis of Candida albicans. MBio, 2013, 4, e00542-13.	4.1	38
60	The Zebrafish as a New Model for the In Vivo Study of Shigella flexneri Interaction with Phagocytes and Bacterial Autophagy. PLoS Pathogens, 2013, 9, e1003588.	4.7	169
61	Septins 2, 7, and 9 and MAP4 co-localize along the axoneme in the primary cilium and control ciliary length. Journal of Cell Science, 2013, 126, 2583-94.	2.0	108
62	Mycolactone activation of Wiskott-Aldrich syndrome proteins underpins Buruli ulcer formation. Journal of Clinical Investigation, 2013, 123, 1501-1512.	8.2	79
63	Listeria and autophagy escape. Autophagy, 2012, 8, 132-134.	9.1	36
64	Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nature Cell Biology, 2012, 14, 1314-1321.	10.3	225
65	Septins: the fourth component of the cytoskeleton. Nature Reviews Molecular Cell Biology, 2012, 13, 183-194.	37. O	641
66	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
67	Virulence Factors That Modulate the Cell Biology of Listeria Infection and the Host Response. Advances in Immunology, 2012, 113, 19-32.	2.2	35
68	Bacterial autophagy: restriction or promotion of bacterial replication?. Trends in Cell Biology, 2012, 22, 283-291.	7.9	70
69	A Role for Septins in the Interaction between the Listeria monocytogenes Invasion Protein InlB and the Met Receptor. Biophysical Journal, 2011, 100, 1949-1959.	0.5	81
70	p62 and NDP52 Proteins Target Intracytosolic Shigella and Listeria to Different Autophagy Pathways. Journal of Biological Chemistry, 2011, 286, 26987-26995.	3.4	257
71	Septins as key regulators of actin based processes in bacterial infection. Biological Chemistry, 2011, 392, 831-835.	2.5	15
72	Autophagy and the cytoskeleton. Autophagy, 2011, 7, 780-782.	9.1	26

#	Article	IF	CITATIONS
73	Recruitment of the Major Vault Protein by InlK: A Listeria monocytogenes Strategy to Avoid Autophagy. PLoS Pathogens, 2011, 7, e1002168.	4.7	148
74	Mycobacterium africanum is not a major cause of human tuberculosis in Cape Town, South Africa. Tuberculosis, 2010, 90, 143-144.	1.9	6
75	Entrapment of Intracytosolic Bacteria by Septin Cage-like Structures. Cell Host and Microbe, 2010, 8, 433-444.	11.0	229
76	Septins Regulate Bacterial Entry into Host Cells. PLoS ONE, 2009, 4, e4196.	2.5	81
77	Septin 11 Restricts InlB-mediated Invasion by Listeria. Journal of Biological Chemistry, 2009, 284, 11613-11621.	3.4	52
78	Cytoskeleton rearrangements during <i>Listeria</i> infection: Clathrin and septins as new players in the game. Cytoskeleton, 2009, 66, 816-823.	4.4	37
79	From Pathogenesis to Cell Biology and Back. Cell Host and Microbe, 2009, 5, 510-513.	11.0	11
80	Correlative Light/Electron Microscopy: a Tool for Investigating Infectious Diseases. Microscopy and Microanalysis, 2009, 15, 862-863.	0.4	1
81	NOD2-Deficient Mice Have Impaired Resistance to <i>Mycobacterium tuberculosis</i> Infection through Defective Innate and Adaptive Immunity. Journal of Immunology, 2008, 181, 7157-7165.	0.8	183
82	Autoinducer-2 Triggers the Oxidative Stress Response in <i>Mycobacterium avium</i> , Leading to Biofilm Formation. Applied and Environmental Microbiology, 2008, 74, 1798-1804.	3.1	89
83	PhoP: A Missing Piece in the Intricate Puzzle of Mycobacterium tuberculosis Virulence. PLoS ONE, 2008, 3, e3496.	2.5	195
84	Molecular Tools for Typing and Branding the Tubercle Bacillus. Current Molecular Medicine, 2007, 7, 309-317.	1.3	12
85	Molecular Genetic Analysis of Two Loci (<i>lty2</i> and <i>lty3</i>) Involved in the Host Response to Infection With Salmonella Typhimurium Using Congenic Mice and Expression Profiling. Genetics, 2007, 177, 1125-1139.	2.9	14
86	Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Molecular Microbiology, 2006, 62, 1251-1263.	2.5	78
87	Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigk. Molecular Microbiology, 2005, 56, 1302-1313.	2.5	82
88	Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology (United Kingdom), 2005, 151, 547-556.	1.8	44
89	Revisiting the Evolution of <i>Mycobacterium bovis</i> . Journal of Bacteriology, 2005, 187, 6386-6395.	2.2	101
90	The Origin and Evolution of Mycobacterium tuberculosis. Clinics in Chest Medicine, 2005, 26, 207-216.	2.1	43

#	Article	IF	CITATION
91	Genomic Characterization of an Endemic Mycobacterium tuberculosis Strain: Evolutionary and Epidemiologic Implications. Journal of Clinical Microbiology, 2004, 42, 2573-2580.	3.9	43
92	Genomic Interrogation of the Dassie Bacillus Reveals It as a Unique RD1 Mutant within the Mycobacterium tuberculosis Complex. Journal of Bacteriology, 2004, 186, 104-109.	2.2	90
93	Extensive Genomic Polymorphism within Mycobacterium avium. Journal of Bacteriology, 2004, 186, 6332-6334.	2.2	76
94	Genomic Analysis Distinguishes Mycobacterium africanum. Journal of Clinical Microbiology, 2004, 42, 3594-3599.	3.9	102
95	The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis, 2004, 84, 197-204.	1.9	47
96	Genetic characterization of the Guinea-Bissau family of Mycobacterium tuberculosis complex strains. Microbes and Infection, 2004, 6, 272-278.	1.9	9
97	The in vitro evolution of BCG vaccines. Vaccine, 2003, 21, 4270-4274.	3.8	108
98	Genomic Deletions Suggest a Phylogeny for the Mycobacterium tuberculosis Complex. Journal of Infectious Diseases, 2002, 186, 74-80.	4.0	229
99	Comparative Genomics in the Fight Against Tuberculosis. Molecular Diagnosis and Therapy, 2002, 2, 189-196.	3.3	16
100	THE EVOLUTION OF TRADE-OFFS: TESTING PREDICTIONS ON RESPONSE TO SELECTION AND ENVIRONMENTAL VARIATION. Evolution: International Journal of Organic Evolution, 2002, 56, 84-95.	2.3	105