
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5882183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
2	THE SECOND <i>FERMI</i> LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS. Astrophysical Journal, Supplement Series, 2013, 208, 17.	7.7	693
3	The International Pulsar Timing Array project: using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 2010, 27, 084013.	4.0	494
4	Gravitational waves from binary supermassive black holes missing in pulsar observations. Science, 2015, 349, 1522-1525.	12.6	386
5	The Parkes Pulsar Timing Array Project. Publications of the Astronomical Society of Australia, 2013, 30,	3.4	350
6	A census of baryons in the Universe from localized fast radio bursts. Nature, 2020, 581, 391-395.	27.8	341
7	The International Pulsar Timing Array: First data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1267-1288.	4.4	332
8	A single fast radio burst localized to a massive galaxy at cosmological distance. Science, 2019, 365, 565-570.	12.6	295
9	LIMITS ON THE STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM THE NORTH AMERICAN NANOHERTZ OBSERVATORY FOR GRAVITATIONAL WAVES. Astrophysical Journal, 2013, 762, 94.	4.5	270
10	Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1751-1769.	4.4	233
11	The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature, 2018, 562, 386-390.	27.8	223
12	On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophysical Journal Letters, 2021, 917, L19.	8.3	217
13	The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science, 2019, 366, 231-234.	12.6	204
14	The International Pulsar Timing Array: second data release. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4666-4687.	4.4	191
15	ASSESSING THE ROLE OF SPIN NOISE IN THE PRECISION TIMING OF MILLISECOND PULSARS. Astrophysical Journal, 2010, 725, 1607-1619.	4.5	186
16	Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2161-2174.	4.4	174
17	The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4873-4887.	4.4	174
18	The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science, 2016, 354, 1249-1252.	12.6	167

#	Article	IF	CITATIONS
19	Development of a pulsar-based time-scale. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2780-2787.	4.4	163
20	Detection of 107 glitches in 36 southern pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 429, 688-724.	4.4	160
21	Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. Astrophysical Journal, 2020, 903, 152.	4.5	148
22	A FAST RADIO BURST IN THE DIRECTION OF THE CARINA DWARF SPHEROIDAL GALAXY. Astrophysical Journal Letters, 2015, 799, L5.	8.3	146
23	Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	142
24	Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution. Science, 2013, 342, 334-337.	12.6	133
25	The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey. Astrophysical Journal Letters, 2017, 841, L12.	8.3	133
26	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
27	Rocking the Lighthouse: Circumpulsar Asteroids and Radio Intermittency. Astrophysical Journal, 2008, 682, 1152-1165.	4.5	130
28	DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259–63/LS 2883 AROUND PERIASTRON WITH <i>FERMI</i> . Astrophysical Journal Letters, 2011, 736, L11.	8.3	130
29	temponest: a Bayesian approach to pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3004-3023.	4.4	128
30	Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	114
31	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	8.9	113
32	The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder. Astrophysical Journal Letters, 2020, 895, L37.	8.3	113
33	An ultra-wide bandwidth (704 to 4Â032ÂMHz) receiver for the Parkes radio telescope. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	113
34	A study of multifrequency polarization pulse profiles of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3223-3262.	4.4	109
35	The MeerKAT telescope as a pulsar facility: System verification and early science results from MeerTime. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	108
36	FRB microstructure revealed by the real-time detection of FRB170827. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1209-1217.	4.4	107

#	Article	IF	CITATIONS
37	The Parkes Pulsar Timing Array project: second data release. Publications of the Astronomical Society of Australia, 2020, 37, .	3.4	107
38	Radio properties of the magnetar near Sagittarius A* from observations with the Australia Telescope Compact Array. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 435, L29-L32.	3.3	101
39	An all-sky search for continuous gravitational waves in the Parkes Pulsar Timing Array data set. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3709-3720.	4.4	98
40	Limitations in timing precision due to single-pulse shape variability in millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1463-1481.	4.4	94
41	Faint Repetitions from a Bright Fast Radio Burst Source. Astrophysical Journal Letters, 2019, 887, L30.	8.3	94
42	High time resolution and polarization properties of ASKAP-localized fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3335-3350.	4.4	93
43	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. Astronomical Journal, 2022, 163, 69.	4.7	91
44	The Spectral Properties of the Bright Fast Radio Burst Population. Astrophysical Journal Letters, 2019, 872, L19.	8.3	85
45	FREQUENCY-DEPENDENT DISPERSION MEASURES AND IMPLICATIONS FOR PULSAR TIMING. Astrophysical Journal, 2016, 817, 16.	4.5	84
46	From spin noise to systematics: stochastic processes in the first International Pulsar Timing Array data release. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2161-2187.	4.4	82
47	Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism. Astrophysical Journal Letters, 2020, 891, L38.	8.3	82
48	A study of spatial correlations in pulsar timing array data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4339-4350.	4.4	80
49	Searching for gravitational wave memory bursts with the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1657-1671.	4.4	79
50	PULSAR OBSERVATIONS OF EXTREME SCATTERING EVENTS. Astrophysical Journal, 2015, 808, 113.	4.5	75
51	Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter. Physical Review D, 2018, 98, .	4.7	72
52	Binary supermassive black hole environments diminish the gravitational wave signal in the pulsar timing band. Monthly Notices of the Royal Astronomical Society, 2014, 442, 56-68.	4.4	70
53	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
54	DOES A "STOCHASTIC―BACKGROUND OF GRAVITATIONAL WAVES EXIST IN THE PULSAR TIMING BAND?. Astrophysical Journal, 2012, 761, 84.	4.5	67

#	Article	IF	CITATIONS
55	AN ASTEROID BELT INTERPRETATION FOR THE TIMING VARIATIONS OF THE MILLISECOND PULSAR B1937+21. Astrophysical Journal, 2013, 766, 5.	4.5	66
56	Fermi Detection of a Luminous \hat{I}^3 -Ray Pulsar in a Globular Cluster. Science, 2011, 334, 1107-1110.	12.6	65
57	PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?. Astrophysical Journal, 2012, 744, 33.	4.5	65
58	Timing of young radio pulsars – I. Timing noise, periodic modulation, and proper motion. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3810-3826.	4.4	63
59	A connection between radio state changing and glitch activity in PSR J0742â 2822. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3080-3084.	4.4	59
60	The kinematics and orbital dynamics of the PSR B1259â^'63/LS 2883 system from 23 yr of pulsar timing. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3255-3264.	4.4	56
61	Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2772-2783.	4.4	56
62	THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES. Astrophysical Journal, 2017, 834, 35.	4.5	54
63	BROADBAND PULSATIONS FROM PSR B1821–24: IMPLICATIONS FOR EMISSION MODELS AND THE PULSAR POPULATION OF M28. Astrophysical Journal, 2013, 778, 106.	4.5	53
64	Six millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection of millisecond pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 430, 571-587.	4.4	52
65	A pulsar-based time-scale from the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5951-5965.	4.4	51
66	Extremely band-limited repetition from a fast radio burst source. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2525-2531.	4.4	51
67	The High Time Resolution Universe pulsar survey - X. Discovery of four millisecond pulsars and updated timing solutions of a further 12. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1865-1883.	4.4	50
68	TIMING GAMMA-RAY PULSARS WITH THE <i>FERMI</i> LARGE AREA TELESCOPE: TIMING NOISE AND ASTROMETRY. Astrophysical Journal, 2015, 814, 128.	4.5	50
69	Five new real-time detections of fast radio bursts with UTMOST. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2989-3002.	4.4	49
70	Identifying and mitigating noise sources in precision pulsar timing data sets. Monthly Notices of the Royal Astronomical Society, 2021, 502, 478-493.	4.4	47
71	Eight new millisecond pulsars from the first MeerKAT globular cluster census. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1407-1426.	4.4	47
72	Interplanetary spacecraft navigation using pulsars. Advances in Space Research, 2013, 52, 1602-1621.	2.6	46

#	Article	IF	CITATIONS
73	Searching a Thousand Radio Pulsars for Gamma-Ray Emission. Astrophysical Journal, 2019, 871, 78.	4.5	46
74	The slope of the source-count distribution for fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1342-1353.	4.4	46
75	The UTMOST pulsar timing programme $\hat{a} \in$ "II. Timing noise across the pulsar population. Monthly Notices of the Royal Astronomical Society, 2020, 494, 228-245.	4.4	46
76	The unusual glitch recoveries of the high-magnetic-field pulsar J1119â^'6127. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3924-3935.	4.4	45
77	Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. Astrophysical Journal Letters, 2021, 919, L23.	8.3	45
78	Dispersion measure variations in a sample of 168 pulsars. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1610-1617.	4.4	42
79	No Low-frequency Emission from Extremely Bright Fast Radio Bursts. Astrophysical Journal Letters, 2018, 867, L12.	8.3	42
80	THE FLUENCE AND DISTANCE DISTRIBUTIONS OF FAST RADIO BURSTS. Astrophysical Journal, 2016, 830, 75.	4.5	41
81	Emission-rotation correlation in pulsars: new discoveries with optimal techniques. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1374-1393.	4.4	41
82	A High-resolution View of Fast Radio Burst Host Environments. Astrophysical Journal, 2021, 917, 75.	4.5	41
83	Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1845-1854.	4.4	40
84	Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. Astrophysical Journal Letters, 2020, 901, L20.	8.3	40
85	Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array. Physical Review Letters, 2021, 127, 251303.	7.8	40
86	Precision Orbital Dynamics from Interstellar Scintillation Arcs for PSR J0437–4715. Astrophysical Journal, 2020, 904, 104.	4.5	39
87	A Search for the Host Galaxy of FRB 171020. Astrophysical Journal Letters, 2018, 867, L10.	8.3	38
88	PULSE INTENSITY MODULATION AND THE TIMING STABILITY OF MILLISECOND PULSARS: A CASE STUDY OF PSR J1713+0747. Astrophysical Journal, 2012, 761, 64.	4.5	37
89	EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR. Astrophysical Journal Letters, 2014, 780, L31.	8.3	37
90	A 24 HR GLOBAL CAMPAIGN TO ASSESS PRECISION TIMING OF THE MILLISECOND PULSAR J1713+0747. Astrophysical Journal, 2014, 794, 21.	4.5	37

#	Article	IF	CITATIONS
91	The Parkes pulsar timing array second data release: timing analysis. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2137-2153.	4.4	37
92	Studying the Solar system with the International Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5501-5516.	4.4	36
93	A population analysis of pulse broadening in ASKAP fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1382-1390.	4.4	35
94	The geometric distance and binary orbit of PSR B1259–63. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4849-4860.	4.4	34
95	The impact of glitches on young pulsar rotational evolution. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3251-3274.	4.4	34
96	Circularly polarized radio emission from the repeating fast radio burst source FRB 20201124A. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3400-3413.	4.4	34
97	THE DISTURBANCE OF A MILLISECOND PULSAR MAGNETOSPHERE. Astrophysical Journal Letters, 2016, 828, L1.	8.3	33
98	Which bright fast radio bursts repeat?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2416-2427.	4.4	33
99	Spectropolarimetric Properties of Swift J1818.0–1607: A 1.4 s Radio Magnetar. Astrophysical Journal Letters, 2020, 896, L37.	8.3	33
100	Timing of young radio pulsars – II. Braking indices and their interpretation. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2012-2026.	4.4	33
101	First ground-based measurement of sub-20 GeV to 100 GeV <i>γ</i> -Rays from the Vela pulsar with H.E.S.S. II. Astronomy and Astrophysics, 2018, 620, A66.	5.1	32
102	Extreme scattering events towards two young pulsars. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4637-4647.	4.4	32
103	The role of FAST in pulsar timing arrays. Research in Astronomy and Astrophysics, 2019, 19, 020.	1.7	32
104	LIMITS ON PLANET FORMATION AROUND YOUNG PULSARS AND IMPLICATIONS FOR SUPERNOVA FALLBACK DISKS. Astrophysical Journal Letters, 2015, 809, L11.	8.3	31
105	Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 868-875.	4.4	31
106	Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. Astrophysical Journal, 2021, 922, 173.	4.5	31
107	The Thousand-Pulsar-Array programme on MeerKAT – I. Science objectives and first results. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3608-3615.	4.4	30
108	DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119–6127 AND SUPERNOVA REMNANT G292.2–0.5. Astrophysical Journal, 2012, 761, 65.	4.5	29

#	Article	IF	CITATIONS
109	The relativistic binary programme on MeerKAT: science objectives and first results. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2094-2114.	4.4	27
110	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
111	Modelling and mitigating refractive propagation effects in precision pulsar timing observations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2075-2089.	4.4	26
112	Spectral Flattening at Low Frequencies in Crab Giant Pulses. Astrophysical Journal, 2017, 851, 20.	4.5	26
113	Disentangling the Cosmic Web toward FRB 190608. Astrophysical Journal, 2020, 901, 134.	4.5	26
114	Very Long Baseline Astrometry of PSR J1012+5307 and its Implications on Alternative Theories of Gravity. Astrophysical Journal, 2020, 896, 85.	4.5	25
115	Measurements of pulse jitter and single-pulse variability in millisecond pulsars using MeerKAT. Monthly Notices of the Royal Astronomical Society, 2021, 502, 407-422.	4.4	25
116	The MeerTime Pulsar Timing Array: A census of emission properties and timing potential. Publications of the Astronomical Society of Australia, 2022, 39, .	3.4	24
117	A pilot ASKAP survey of radio transient events in the region around the intermittent pulsar PSR J1107â^'5907. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3948-3960.	4.4	23
118	Characterizing the rotational irregularities of the Vela pulsar from 21Âyr of phase-coherent timing. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3104-3111.	4.4	23
119	Robust estimation of scattering in pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1474-1485.	4.4	23
120	Radio polarimetry of Galactic Centre pulsars. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3005-3011.	4.4	22
121	Discovery of gamma- and X-ray pulsations from the young and energetic PSRÂJ1357â^'6429 with <i>Fermi</i> and <i>XMM-Newton</i> . Astronomy and Astrophysics, 2011, 533, A102.	5.1	21
122	Two years of pulsar observations with the ultra-wide-band receiver on the Parkes radio telescope. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1253-1262.	4.4	21
123	Consistency of the Parkes Pulsar Timing Array Signal with a Nanohertz Gravitational-wave Background. Astrophysical Journal Letters, 2022, 932, L22.	8.3	21
124	Comparison of pulsar positions from timing and very long baseline astrometry. Monthly Notices of the Royal Astronomical Society, 2017, 469, 425-434.	4.4	20
125	A survey of the Galactic plane for dispersed radio pulses with the Australian Square Kilometre Array Pathfinder. Monthly Notices of the Royal Astronomical Society, 2019, 486, 166-174.	4.4	20
126	The thousand-pulsar-array programme on MeerKAT IV: Polarization properties of young, energetic pulsars. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4483-4495.	4.4	20

#	Article	IF	CITATIONS
127	Six faint gamma-ray pulsars seen with the <i>Fermi</i> Large Area Telescope. Astronomy and Astrophysics, 2014, 570, A44.	5.1	20
128	MINIMUM REQUIREMENTS FOR DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND USING PULSARS. Astrophysical Journal, 2012, 750, 89.	4.5	19
129	A fast radio burst in the direction of the Virgo Cluster. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1-8.	4.4	19
130	The Thousand-Pulsar-Array programme on MeerKAT – VI. Pulse widths of a large and diverse sample of radio pulsars. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	19
131	The Thousand-Pulsar-Array programme on MeerKAT – V. Scattering analysis of single-component pulsars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1115-1128.	4.4	19
132	Optimal interpolation and prediction in pulsar timing. Monthly Notices of the Royal Astronomical Society, 2012, 424, 244-251.	4.4	18
133	Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball. Astrophysical Journal Letters, 2017, 837, L22.	8.3	18
134	Wide-band profile domain pulsar timing analysis. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3706-3727.	4.4	18
135	The performance and calibration of the CRAFT fly's eye fast radio burst survey. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	18
136	The dynamic magnetosphere of Swift J1818.0–1607. Monthly Notices of the Royal Astronomical Society, 2021, 502, 127-139.	4.4	18
137	The three discrete nulling time-scales of PSR J1717â~'4054. Monthly Notices of the Royal Astronomical Society, 2014, 445, 320-329.	4.4	17
138	Versatile directional searches for gravitational waves with Pulsar Timing Arrays. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3662-3673.	4.4	17
139	Observations of Low-frequency Radio Emission from Millisecond Pulsars and Multipath Propagation in the Interstellar Medium. Astrophysical Journal, Supplement Series, 2018, 238, 1.	7.7	17
140	A southern sky search for repeating fast radio bursts using the Australian SKA Pathfinder. Monthly Notices of the Royal Astronomical Society, 2019, 486, 70-76.	4.4	16
141	High-precision search for dark photon dark matter with the Parkes Pulsar Timing Array. Physical Review Research, 2022, 4, .	3.6	16
142	First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure. Astrophysical Journal, 2020, 900, 122.	4.5	15
143	<i>XMM-NEWTON</i> OBSERVATION OF THE VERY OLD PULSAR J0108–1431. Astrophysical Journal, 2012, 761, 117.	' 4.5	14
144	Chandra Phase-resolved Spectroscopy of the High Magnetic Field Pulsar B1509â^'58. Astrophysical Journal, 2017, 838, 156.	4.5	14

#	Article	IF	CITATIONS
145	Searching for gravitational-wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array. Monthly Notices of the Royal Astronomical Society, 2020, 501, 701-712.	4.4	14
146	Flux density variability of 286 radio pulsars from a decade of monitoring. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4490-4513.	4.4	14
147	The High Time Resolution Universe Pulsar Survey – XVII. PSR J1325â^6253, a low eccentricity double neutron star system from an ultra-stripped supernova. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5782-5792.	4.4	14
148	Mode changing in J1909Ââ~'Â3744: the most precisely timed pulsar. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5908-5915.	4.4	13
149	Profile stochasticity in PSR J1909â^'3744. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1058-1072.	4.4	12
150	Astrometric accuracy of snapshot fast radio burst localisations with ASKAP. Publications of the Astronomical Society of Australia, 2021, 38, .	3.4	12
151	A polarization census of bright pulsars using the ultrawideband receiver on the Parkes radio telescope. Monthly Notices of the Royal Astronomical Society, 2021, 504, 228-247.	4.4	12
152	Discovery of a Steep-spectrum Low-luminosity Pulsar with the Murchison Widefield Array. Astrophysical Journal Letters, 2021, 911, L26.	8.3	12
153	A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. Astronomy and Astrophysics, 2020, 639, A119.	5.1	12
154	Polarimetry of the Eclipsing Pulsar PSR J1748–2446A. Astrophysical Journal, 2018, 867, 22.	4.5	11
155	Hunting for Radio Emission from the Intermittent Pulsar J1107-5907 at Low Frequencies. Astrophysical Journal, 2018, 869, 134.	4.5	11
156	The emission and scintillation properties of RRAT J2325â^`0530 at 154 MHz and 1.4 GHz. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	11
157	Radio Observations of Two Intermittent Pulsars: PSRs J1832+0029 and J1841â^0500. Astrophysical Journal, 2020, 897, 8.	4.5	10
158	Constraining bright optical counterparts of fast radio bursts. Astronomy and Astrophysics, 2021, 653, A119.	5.1	10
159	Discovery of PSR J0523-7125 as a Circularly Polarized Variable Radio Source in the Large Magellanic Cloud. Astrophysical Journal, 2022, 930, 38.	4.5	10
160	Single-Source Gravitational Wave Limits From the J1713+0747 24-hr Global Campaign. Journal of Physics: Conference Series, 2016, 716, 012014.	0.4	9
161	Detection of a Glitch in the Pulsar J1709â [~] 4429. Research Notes of the AAS, 2018, 2, 139.	0.7	9
162	Magnetospheric birefringence induces polarization signatures in neutron-star spectra. Monthly Notices of the Royal Astronomical Society, 2006, 368, 1377-1380.	4.4	8

#	Article	IF	CITATIONS
163	Measurement of the Rate Distribution of the Population of Repeating Fast Radio Bursts: Implications for Progenitor Models. Astrophysical Journal Letters, 2020, 895, L22.	8.3	8
164	A search for fast-radio-burst-like emission from Fermi gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 125-129.	4.4	7
165	Estimating the Contribution of Foreground Halos to the FRB 180924 Dispersion Measure. Astrophysical Journal, 2021, 921, 134.	4.5	7
166	The Thousand-Pulsar-Array programme on MeerKAT – II. Observing strategy for pulsar monitoring with subarrays. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4456-4467.	4.4	6
167	A High Time-resolution Study of the Millisecond Pulsar J2241â^'5236 at Frequencies Below 300 MHz. Astrophysical Journal, 2019, 882, 133.	4.5	6
168	TWO RADIO-EMISSION MECHANISMS IN PSR J0901–4624. Astrophysical Journal Letters, 2015, 804, L18.	8.3	5
169	Independent Discovery of a Nulling Pulsar with Unusual Subpulse Drifting Properties with the Murchison Widefield Array. Astrophysical Journal, 2022, 933, 210.	4.5	5
170	The thousand-pulsar-array programme on MeerKAT VII: polarisation properties of pulsars in the Magellanic Clouds. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5209-5217.	4.4	4
171	Detection of Frequency-dependent Dispersion Measure toward the Millisecond Pulsar J2241–5236 from Contemporaneous Wideband Observations. Astrophysical Journal Letters, 2022, 930, L27.	8.3	3
172	Probing the Emission States of PSR J1107â^'5907. Astrophysical Journal, 2020, 889, 6.	4.5	2
173	Pulsars with the Australian Square Kilometre Array Pathfinder. , 2011, , .		Ο
174	Summary of session C1: pulsar timing arrays. General Relativity and Gravitation, 2014, 46, 1.	2.0	0
175	Limits on First Structure Formation from Pulsar Timing. Proceedings of the International Astronomical Union, 2015, 11, 329-335.	0.0	0
176	A Search for Bursts from FRB 191228 in Breakthrough Listen Archival Data. Research Notes of the AAS, 2020, 4, 99.	0.7	0