Mathieu Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5881408/publications.pdf

Version: 2024-02-01

279798 434195 6,314 27 23 31 citations h-index g-index papers 35 35 35 7634 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	38.1	1,792
2	Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nature Communications, 2015, 6, 5979.	12.8	540
3	A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs. Journal of the American Chemical Society, 2014, 136, 13983-13986.	13.7	363
4	A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 2014, 136, 17714-17717.	13.7	356
5	Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area. Journal of the American Chemical Society, 2015, 137, 413-419.	13.7	352
6	Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks. Nature Communications, 2014, 5, 5723.	12.8	332
7	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	12.8	326
8	Porous Organic Polymers for Postâ€Combustion Carbon Capture. Advanced Materials, 2017, 29, 1700229.	21.0	293
9	A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie - International Edition, 2015, 54, 149-154.	13.8	258
10	Stepwise Synthesis of Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 857-865.	15.6	246
11	A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 2015, 6, 3926-3930.	7.4	236
12	Increasing the Stability of Metal-Organic Frameworks. Advances in Chemistry, 2014, 2014, 1-8.	1.1	208
13	Symmetryâ€Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology. Angewandte Chemie - International Edition, 2014, 53, 815-818.	13.8	197
14	Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 14696-14700.	13.8	169
15	Biomimicry in metal–organic materials. Coordination Chemistry Reviews, 2015, 293-294, 327-356.	18.8	128
16	Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm, 2014, 16, 4069-4083.	2.6	112
17	Derivation and Decoration of Nets with Trigonal-Prismatic Nodes: A Unique Route to Reticular Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5299-5307.	13.7	84
18	Design and synthesis of nucleobase-incorporated metal–organic materials. Inorganic Chemistry Frontiers, 2014, 1, 159.	6.0	52

#	Article	IF	CITATIONS
19	Costâ€Effective Synthesis of Amineâ€Tethered Porous Materials for Carbon Capture. ChemSusChem, 2015, 8, 433-438.	6.8	42
20	Direct Measurement of Adsorbed Gas Redistribution in Metal–Organic Frameworks. Journal of the American Chemical Society, 2015, 137, 2919-2930.	13.7	40
21	Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. Structure and Bonding, 2014, , 1-27.	1.0	19
22	Incorporating Heavy Alkanes in Metal–Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity. Chemistry - A European Journal, 2018, 24, 16977-16982.	3.3	16
23	Modulated Synthesis of Metalâ€Organic Frameworks through Tuning of the Initial Oxidation State of the Metal. European Journal of Inorganic Chemistry, 2016, 2016, 4368-4372.	2.0	14
24	Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption. APL Materials, $2014, 2, .$	5.1	11
25	Pore-controlled formation of 0D metal complexes in anionic 3D metal–organic frameworks. CrystEngComm, 2015, 17, 996-1000.	2.6	10
26	Improving Alkylamine Incorporation in Porous Polymer Networks through Dopant Incorporation. Advanced Sustainable Systems, 2019, 3, 1900051.	5.3	3
27	Group 4 Metals as Secondary Building Units: Ti, Zr, and Hf-based MOFs. , 2016, , 137-170.		2