
Avinash Shenoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/588129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy, 2021, 17, 1571-1591.	9.1	27
2	Very long Oâ€antigen chains of <i>Salmonella</i> Paratyphi A inhibit inflammasome activation and pyroptotic cell death. Cellular Microbiology, 2021, 23, e13306.	2.1	11
3	Mycobacterial STAND adenylyl cyclases: The HTH domain binds DNA to form biocrystallized nucleoids. Biophysical Journal, 2021, 120, 1231-1246.	0.5	4
4	A Probe for NLRP3 Inflammasome Inhibitor MCC950 Identifies Carbonic Anhydrase 2 as a Novel Target. ACS Chemical Biology, 2021, 16, 982-990.	3.4	27
5	Cyclic nucleotides, gut physiology and inflammation. FEBS Journal, 2020, 287, 1970-1981.	4.7	6
6	Human GBP1 Differentially Targets Salmonella and Toxoplasma to License Recognition of Microbial Ligands and Caspase-Mediated Death. Cell Reports, 2020, 32, 108008.	6.4	58
7	Vying for the control of inflammasomes: The cytosolic frontier of enteric bacterial pathogen–host interactions. Cellular Microbiology, 2020, 22, e13184.	2.1	17
8	Genetic and pharmacological inhibition of inflammasomes reduces the survival of Mycobacterium tuberculosis strains in macrophages. Scientific Reports, 2020, 10, 3709.	3.3	19
9	Clustering of Tir during enteropathogenic E. coli infection triggers calcium influx–dependent pyroptosis in intestinal epithelial cells. PLoS Biology, 2020, 18, e3000986.	5.6	18
10	Citrobacter rodentium–host–microbiota interactions: immunity, bioenergetics and metabolism. Nature Reviews Microbiology, 2019, 17, 701-715.	28.6	97
11	Human <scp>GBP</scp> 1 is a microbeâ€specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO Journal, 2019, 38, e100926.	7.8	170
12	Enteropathogenic Escherichia coli Stimulates Effector-Driven Rapid Caspase-4 Activation in Human Macrophages. Cell Reports, 2019, 27, 1008-1017.e6.	6.4	36
13	Human TANK-binding kinase 1 is required for early autophagy induction upon herpes simplex virus 1 infection. Journal of Allergy and Clinical Immunology, 2019, 143, 765-769.e7.	2.9	18
14	<i>Shigella sonnei</i> O-Antigen Inhibits Internalization, Vacuole Escape, and Inflammasome Activation. MBio, 2019, 10, .	4.1	22
15	Regulated proteolysis of p62/SQSTM1 enables differential control of autophagy and nutrient sensing. Science Signaling, 2018, 11, .	3.6	26
16	Modulation of Host Cell Processes by T3SS Effectors. Current Topics in Microbiology and Immunology, 2018, 416, 73-115.	1.1	26
17	The Atypical Ubiquitin E2 Conjugase UBE2L3 Is an Indirect Caspase-1 Target and Controls IL-1Î ² Secretion by Inflammasomes. Cell Reports, 2017, 18, 1285-1297.	6.4	59
18	E3 Ubiquitin ligase ZNRF4 negatively regulates NOD2 signalling and induces tolerance to MDP. Nature Communications, 2017, 8, 15865.	12.8	26

AVINASH SHENOY

#	Article	IF	CITATIONS
19	Septins restrict inflammation and protect zebrafish larvae from Shigella infection. PLoS Pathogens, 2017, 13, e1006467.	4.7	51
20	Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nature Communications, 2016, 7, 13292.	12.8	106
21	The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nature Reviews Immunology, 2015, 15, 559-573.	22.7	141
22	Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nature Nanotechnology, 2015, 10, 741-747.	31.5	203
23	Antimicrobial inflammasomes: unified signalling against diverse bacterial pathogens. Current Opinion in Microbiology, 2015, 23, 32-41.	5.1	31
24	IFN-Î ³ Elicits Macrophage Autophagy via the p38 MAPK Signaling Pathway. Journal of Immunology, 2012, 189, 813-818.	0.8	148
25	IFN-Inducible GTPases in Host Cell Defense. Cell Host and Microbe, 2012, 12, 432-444.	11.0	259
26	GBP5 Promotes NLRP3 Inflammasome Assembly and Immunity in Mammals. Science, 2012, 336, 481-485.	12.6	409
27	A Family of IFN-γ–Inducible 65-kD GTPases Protects Against Bacterial Infection. Science, 2011, 332, 717-721.	12.6	419
28	Emerging themes in IFN-γ-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology, 2008, 212, 771-784.	1.9	81
29	Structural and Biochemical Analysis of the Rv0805 Cyclic Nucleotide Phosphodiesterase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2007, 365, 211-225.	4.2	74
30	Mycobacterial adenylyl cyclases: Biochemical diversity and structural plasticity. FEBS Letters, 2006, 580, 3344-3352.	2.8	53
31	New messages from old messengers: cAMP and mycobacteria. Trends in Microbiology, 2006, 14, 543-550.	7.7	69
32	Characterization of phylogenetically distant members of the adenylate cyclase family from mycobacteria: Rv1647 from Mycobacterium tuberculosis and its orthologue ML1399 from M. leprae. Biochemical Journal, 2005, 387, 541-551.	3.7	31
33	The Rv0805 Gene fromMycobacterium tuberculosisEncodes a 3â€~,5â€~-Cyclic Nucleotide Phosphodiesterase:Â Biochemical and Mutational Analysisâ€. Biochemistry, 2005, 44, 15695-15704.	2.5	80
34	A Survey of Nucleotide Cyclases in Actinobacteria: Unique Domain Organization and Expansion of the Class III Cyclase Family inMycobacterium tuberculosis. Comparative and Functional Genomics, 2004, 5, 17-38.	2.0	48
35	Class III nucleotide cyclases in bacteria and archaebacteria: lineage-specific expansion of adenylyl cyclases and a dearth of guanylyl cyclases. FEBS Letters, 2004, 561, 11-21.	2.8	47
36	Site-directed mutagenesis using a single mutagenic oligonucleotide and DpnI digestion of template DNA. Analytical Biochemistry, 2003, 319, 335-336.	2.4	109

#	Article	IF	CITATIONS
37	Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. FEBS Letters, 2003, 545, 253-259.	2.8	32
38	The ascent of nucleotide cyclases: conservation and evolution of a theme. Journal of Biosciences, 2002, 27, 85-91.	1.1	8
39	His kinase or mine? Histidine kinases through evolution. Journal of Biosciences, 2000, 25, 317-322.	1.1	2