Alicia Rivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5880436/publications.pdf Version: 2024-02-01

ALICIA RIVERA

#	Article	IF	CITATIONS
1	Insulin-like Growth Factor II Prevents MPP+ and Glucocorticoid Mitochondrial-Oxidative and Neuronal Damage in Dopaminergic Neurons. Antioxidants, 2022, 11, 41.	5.1	3
2	Dopamine D4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells, 2022, 11, 31.	4.1	6
3	The Balance of MU-Opioid, Dopamine D2 and Adenosine A2A Heteroreceptor Complexes in the Ventral Striatal-Pallidal GABA Antireward Neurons May Have a Significant Role in Morphine and Cocaine Use Disorders. Frontiers in Pharmacology, 2021, 12, 627032.	3.5	8
4	Multiple Adenosine-Dopamine (A2A-D2 Like) Heteroreceptor Complexes in the Brain and Their Role in Schizophrenia. Cells, 2020, 9, 1077.	4.1	18
5	Pharmacological activation of dopamine D4 receptor modulates morphine-induced changes in the expression of GAD65/67 and GABAB receptors in the basal ganglia. Neuropharmacology, 2019, 152, 22-29.	4.1	15
6	Selective ablation of striatal striosomes produces the deregulation of dopamine nigrostriatal pathway. PLoS ONE, 2018, 13, e0203135.	2.5	7
7	Analysis and Quantification of GPCR Allosteric Receptor–Receptor Interactions Using Radioligand Binding Assays: The A2AR-D2R Heteroreceptor Complex Example. Neuromethods, 2018, , 1-14.	0.3	0
8	Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Frontiers in Synaptic Neuroscience, 2018, 10, 20.	2.5	43
9	Synthesis and dopaminergic activity of a series of new 1-aryl tetrahydroisoquinolines and 2-substituted 1-aryl-3-tetrahydrobenzazepines. Bioorganic Chemistry, 2018, 80, 480-491.	4.1	9
10	Transcriptomic integration of D4R and MOR signaling in the rat caudate putamen. Scientific Reports, 2018, 8, 7337.	3.3	8
11	Searching the GPCR Heterodimer Network (GPCR-hetnet) Database for Information to Deduce the Receptor–Receptor Interface and Its Role in the Integration of Receptor Heterodimer Functions. Neuromethods, 2018, , 283-298.	0.3	0
12	On the Study of D4R-MOR Receptor–Receptor Interaction in the Rat Caudate Putamen: Relevance on Morphine Addiction. Neuromethods, 2018, , 25-39.	0.3	0
13	Dopamine D ₄ receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addiction Biology, 2017, 22, 1232-1245.	2.6	24
14	Role of D 2 -like Heteroreceptor Complexes in the Effects of Cocaine, Morphine, and Hallucinogens. , 2016, , 93-101.		0
15	<i>Dunaliella tertiolecta</i> (Chlorophyta) Avoids Cell Death Under Ultraviolet Radiation By Triggering Alternative Photoprotective Mechanisms. Photochemistry and Photobiology, 2015, 91, 1389-1402.	2.5	13
16	Dopamine D4 Receptor Counteracts Morphine-Induced Changes in µ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen. International Journal of Molecular Sciences, 2014, 15, 1481-1498.	4.1	14
17	The G Protein-Coupled Receptor Heterodimer Network (GPCR-HetNet) and Its Hub Components. International Journal of Molecular Sciences, 2014, 15, 8570-8590.	4.1	124
18	Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurology Psychiatry and Brain Research, 2013, 19, 141-158.	2.0	17

ALICIA RIVERA

#	Article	IF	CITATIONS
19	On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-17.	1.2	15
20	Early modulation by the dopamine D ₄ receptor of morphineâ€induced changes in the opioid peptide systems in the rat caudate putamen. Journal of Neuroscience Research, 2013, 91, 1533-1540.	2.9	10
21	Synthesis of 1-substituted epibatidine analogues and their <i>in vitro</i> and <i>in vivo</i> evaluation as α ₄ β ₂ nicotinic acetylcholine receptor ligands. RSC Advances, 2013, 4, 2226-2234.	3.6	4
22	Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks. Frontiers in Physiology, 2012, 3, 136.	2.8	67
23	Dopamine D2 and D4 receptor heteromerization and its allosteric receptor–receptor interactions. Biochemical and Biophysical Research Communications, 2011, 404, 928-934.	2.1	88
24	Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation. Brain Research, 2011, 1407, 47-61.	2.2	22
25	On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X7 receptor antagonist A-438079. Journal of Neural Transmission, 2010, 117, 681-687.	2.8	89
26	Understanding the Role of the Promotora in a Latino Diabetes Education Program. Qualitative Health Research, 2010, 20, 386-399.	2.1	42
27	Adenosine–Dopamine Interactions in the Pathophysiology and Treatment of CNS Disorders. CNS Neuroscience and Therapeutics, 2010, 16, e18-42.	3.9	141
28	Common key-signals in learning and neurodegeneration: focus on excito-amino acids, β-amyloid peptides and α-synuclein. Journal of Neural Transmission, 2009, 116, 953-974.	2.8	8
29	Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Research Reviews, 2008, 58, 415-452.	9.0	192
30	Cellular localization and distribution of dopamine D4 receptors in the rat cerebral cortex and their relationship with the cortical dopaminergic and noradrenergic nerve terminal networks. Neuroscience, 2008, 155, 997-1010.	2.3	43
31	Dopamine D4 receptor activation decreases the expression of μ-opioid receptors in the rat striatum. Journal of Comparative Neurology, 2007, 502, 358-366.	1.6	24
32	From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. Brain Research Reviews, 2007, 55, 17-54.	9.0	205
33	One century of progress in neuroscience founded on Golgi and Cajal's outstanding experimental and theoretical contributions. Brain Research Reviews, 2007, 55, 167-189.	9.0	30
34	Intramembrane receptor–receptor interactions: a novel principle in molecular medicine. Journal of Neural Transmission, 2007, 114, 49-75.	2.8	113
35	Uncoupling protein 2/3 immunoreactivity and the ascending dopaminergic and noradrenergic neuronal systems: Relevance for volume transmission. Neuroscience, 2006, 137, 1447-1461.	2.3	40
36	Uncoupling protein-2 promotes nigrostriatal dopamine neuronal function. European Journal of Neuroscience, 2006, 24, 32-36.	2.6	35

ALICIA RIVERA

#	Article	IF	CITATIONS
37	Galanin-neuropeptideâ€fY (NPY) interactions in central cardiovascular control: involvement of the NPYâ€fY1receptor subtype. European Journal of Neuroscience, 2006, 24, 499-508.	2.6	18
38	Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives. Acta Physiologica, 2006, 187, 329-344.	3.8	104
39	Protection but maintained dysfunction of nigral dopaminergic nerve cell bodies and striatal dopaminergic terminals in MPTP-lesioned mice after acute treatment with the mGluR5 antagonist MPEP. Brain Research, 2005, 1033, 216-220.	2.2	52
40	Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. Journal of Neural Transmission, 2005, 112, 65-76.	2.8	60
41	Anxiogenic-like activity of 3,4-methylenedioxy-methamphetamine ("Ecstasyâ€) in the social interaction test is accompanied by an increase of c-fos expression in mice amygdala. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2004, 28, 249-254.	4.8	43
42	Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Research, 2003, 989, 35-41.	2.2	42
43	D5 (Not D1) Dopamine Receptors Potentiate Burst-Firing in Neurons of the Subthalamic Nucleus by Modulating an L-Type Calcium Conductance. Journal of Neuroscience, 2003, 23, 816-825.	3.6	101
44	Molecular dissection of dopamine receptor signaling. Journal of Chemical Neuroanatomy, 2002, 23, 237-242.	2.1	24
45	Propranolol blocks the tachycardia induced by galanin (1–15) but not by galanin (1–29). Regulatory Peptides, 2002, 107, 29-36.	1.9	9
46	Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. Journal of Neurochemistry, 2002, 80, 219-229.	3.9	104
47	Molecular phenotype of rat striatal neurons expressing the dopamine D5receptor subtype. European Journal of Neuroscience, 2002, 16, 2049-2058.	2.6	103
48	Pancreatic Homeodomain Transcription Factor IDX1/IPF1 Expressed in Developing Brain Regulates Somatostatin Gene Transcription in Embryonic Neural Cells. Journal of Biological Chemistry, 2000, 275, 19106-19114.	3.4	37
49	Dopamine D5 receptors of rat and human brain. Neuroscience, 2000, 100, 689-699.	2.3	210
50	Differential regional and cellular distribution of dopamine D2-like receptors: An immunocytochemical		243

study of subtype-specific antibodies in rat and human brain. , 1998, 402, 353-371.