Ping Guan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5879905/publications.pdf

Version: 2024-02-01

30	693	17 h-index	26
papers	citations		g-index
30	30	30	675 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Electrochemical Immunosensor for the Sensitive Detection of Alzheimer's Biomarker Amyloidâ€Î² (1–42) Using the Hemeâ€amyloidâ€Î² (1–42) Complex as the Signal Source. Electroanalysis, 2022, 34, 263-274.	2.9	8
2	Inhibition Mechanisms of (â^')-Epigallocatechin-3-gallate and Genistein on Amyloid-beta 42 Peptide of Alzheimer's Disease via Molecular Simulations. ACS Omega, 2022, 7, 19665-19675.	3.5	8
3	Lasting Tracking and Rapid Discrimination of Live Gram-Positive Bacteria by Peptidoglycan-Targeting Carbon Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1277-1287.	8.0	40
4	Amino acid–functionalized carbon quantum dots for selective detection of Al3+ ions and fluorescence imaging in living cells. Analytical and Bioanalytical Chemistry, 2021, 413, 3965-3974.	3.7	17
5	Recent Advances in Application of Ionic Liquids in Electrolyte of Lithium Ion Batteries. Journal of Energy Storage, 2021, 40, 102659.	8.1	80
6	Chitosan modified ultra-thin hollow nanoparticles for photosensitizer loading and enhancing photodynamic antibacterial activities. International Journal of Biological Macromolecules, 2021, 186, 839-848.	7.5	12
7	Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer's related amyloid- \hat{l}^2 aggregation and inhibiting fungal infection. Materials Today Bio, 2021, 12, 100167.	5.5	10
8	Highly biocompatible graphene quantum dots: green synthesis, toxicity comparison and fluorescence imaging. Journal of Materials Science, 2020, 55, 1198-1215.	3.7	50
9	Drug-based magnetic imprinted nanoparticles: Enhanced lysozyme amyloid fibrils cleansing and anti-amyloid fibrils toxicity. International Journal of Biological Macromolecules, 2020, 153, 723-735.	7.5	24
10	A novel controllable molecularly imprinted drug delivery system based on the photothermal effect of graphene oxide quantum dots. Journal of Materials Science, 2019, 54, 9124-9139.	3.7	35
11	Preparation of Molecularly Imprinted Mesoporous Materials for Highly Enhancing Adsorption Performance of Cytochrome C. Polymers, 2018, 10, 298.	4.5	22
12	Synthesis and physicochemical properties of L-(+)- \hat{l} ±-(positive butyl)-leucine ethyl ester chiral ionic liquids. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 249-255.	1.0	2
13	Preparation of surface-imprinted microspheres using ionic liquids as novel cross-linker for recognizing an immunostimulating peptide. Journal of Materials Science, 2017, 52, 8027-8040.	3.7	30
14	Preparation of protein imprinted microspheres using amphiphilic ionic liquid as stabilizer and emulsifier via miniemulsion polymerization. Chemical Engineering Journal, 2017, 317, 356-367.	12.7	42
15	Immunostimulating peptide interfacial imprinted magnetic microspheres synthesized via Pickering emulsion polymerization. Journal of Materials Science, 2017, 52, 4713-4726.	3.7	16
16	Preparation of <scp>l</scp> â€phenylalanineâ€imprinted solidâ€phase extraction sorbent by Pickering emulsion polymerization and the selective enrichment of <scp>l</scp> â€phenylalanine from human urine. Journal of Separation Science, 2016, 39, 1863-1872.	2.5	6
17	Synthesis of coreâ \in shell imprinting polymers with uniform thin imprinting layer via iniferter-induced radical polymerization for the selective recognition of thymopentin in aqueous solution. RSC Advances, 2016, 6, 110019-110031.	3.6	21
18	Preparation of highly cross-linked raspberry-like nano/microspheres and surface tailoring for controlled immunostimulating peptide adsorption. Polymer Chemistry, 2016, 7, 4531-4541.	3.9	25

#	Article	IF	CITATIONS
19	Preparation of surface-imprinted microspheres effectively controlled by orientated template immobilization using highly cross-linked raspberry-like microspheres for the selective recognition of an immunostimulating peptide. Journal of Materials Chemistry B, 2016, 4, 1510-1519.	5.8	36
20	Surface modification of imprinted polymer microspheres with ultrathin hydrophilic shells to improve selective recognition of glutathione in aqueous media. Materials Science and Engineering C, 2016, 60, 1-6.	7.3	20
21	Molecularly imprinted polymers for the selective recognition of <scp>l</scp> â€phenylalanine based on 1â€butyâ€3â€methylimidazolium ionic liquid. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
22	Preparation of "dummy― <scp>lâ€</scp> phenylalanine molecularly imprinted microspheres by using ionic liquid as a template and functional monomer. Journal of Separation Science, 2015, 38, 3279-3287.	2.5	18
23	Preparation of molecularly imprinted polymers using ion-pair dummy template imprinting and polymerizable ionic liquids. RSC Advances, 2015, 5, 62697-62705.	3.6	20
24	The effectively specific recognition of bovine serum albumin imprinted silica nanoparticles by utilizing a macromolecularly functional monomer to stabilize and imprint template. Analytica Chimica Acta, 2015, 884, 97-105.	5.4	43
25	The performance optimization and specific adsorption of L-phenylalanine imprinted polymers using 1-vinyl-3-carboxymethylimidazolium chloride as functional monomer. Designed Monomers and Polymers, 2015, 18, 185-198.	1.6	9
26	Synthesis of water-compatible surface-imprinted composite microspheres with core–shell structure for selective recognition of thymopentin from aqueous solution. Journal of Materials Science, 2015, 50, 427-438.	3.7	12
27	Influence of structural variations on electrical conductivity and solubility of 1-vinyl-3-alkylimidazole halogen ionic liquids. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 1090-1097.	1.0	2
28	Physicochemical characterization of paramagnetic ionic liquids 1â€vinylâ€3â€alkylimidazolium tetrahalogenidoferrate(III) [VRIM][FeCl _m Br _{4 â^ m}]. Journal of Physical Organic Chemistry, 2014, 27, 498-503.	2 1.9	23
29	Preparation of bovine serum albumin imprinting sensitive hydrogels using ionic liquid as co-monomer and stabilizer. Talanta, 2014, 121, 56-64.	5.5	46
30	Novel N-methylimidazolium chiral ionic liquids with esterfunction functionality in cation. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 144-149.	1.0	0